MODBUS PROTOCOL

PDF format version of the MODBUS Protocol
The original was found at:

http://www.http://www.modicon.com/techpubs/toc7.html

(In case of any discrepancies, that version should be considered accurate.)

Hope you find this useful!
Spehro Pefhany, January 2000

v 3-1750 The Queensway Suite 1298 Toronto ON Canada M9C 4H5
./ ; INC. (905) 271-4477 fax: (905) 271-9838 e-mail: info@trexon.com

Modbus Protocol

Chapter 1 Modbus Protocol

Chapter 2 Data and Control Functions

Chapter 3 Diagnostic Subfunctions

Chapter 4 Exception Responses

Chapter 5 Application Notes

Chapter 6 LRC / CRC Generation

http://www.modicon.com/techpubs/toc7.html [1/11/2000 10:32:59 PM]

Modbus Protocol

Chapter 1
Modbus Protocol

V '.5<:| ntroducing Modbus Protocol

V xTWO Serial Transmission Modes

V xM odbus M essage Framing

V |'..SCError Checking M ethods

1.1 Introducing Modbus Protocol

M odicon programmable controllers can communicate with each other and with other devices
over avariety of networks. Supported networks include the Modicon Modbus and Modbus Plus
industrial networks, and standard networks such as MAP and Ethernet. Networks are accessed
by built-in portsin the controllers or by network adapters, option modules, and gateways that
are available from Modicon. For original equipment manufacturers, Modicon ModConnect
partner programs are available for closealy integrating networks like Modbus Plus into
proprietary product designs.

The common language used by all Modicon controllersis the Modbus protocol. This protocol
defines a message structure that controllers will recognize and use, regardless of the type of
networks over which they communicate. It describes the process a controller uses to request
access to another device, how it will respond to requests from the other devices, and how errors
will be detected and reported. It establishes a common format for the layout and contents of
message fields.

The Modbus protocol provides the internal standard that the Modicon controllers use for
parsing messages. During communications on a Modbus network, the protocol determines how
each controller will know its device address, recognize a message addressed to it, determine the
kind of action to be taken, and extract any data or other information contained in the message. If
areply isrequired, the controller will construct the reply message and send it using Modbus
protocol.

On other networks, messages containing Modbus protocol are imbedded into the frame or
packet structure that is used on the network. For example, Modicon network controllers for
Modbus Plus or MAP, with associated application software libraries and drivers, provide
conversion between the imbedded Modbus message protocol and the specific framing protocols
those networks use to communicate between their node devices.

This conversion also extends to resolving node addresses, routing paths, and error-checking
methods specific to each kind of network. For example, Modbus device addresses contained in
the Modbus protocol will be converted into node addresses prior to transmission of the
messages. Error-checking fields will also be applied to message packets, consistent with each

http://www.modicon.com/techpubs/intr7.html (1 of 5) [1/11/2000 10:36:08 PM]

Modbus Protocol

network's protocol. At the final point of delivery, however-for example, a controller-the
contents of the imbedded message, written using Modbus protocol, define the action to be
taken.

Figure 1 shows how devices might be interconnected in a hierarchy of networks that employ
widely differing communication techniques. In message transactions, the M odbus protocol
Imbedded into each network's packet structure provides the common language by which the
devices can exchange data.

HOET
FROCEZEZOR
Map
4594655
mo ME PLUE]
MODEL:E Fast
BHO FROGRAMMER
EHE0 TO MAP)
MODELE PLUE
KT M43 45d0/E
e Llu) i plul EmMES
HOET frdrdl EHED
MODELE MODELE

UPTO FOUR
MODEUE DEMICEE

Pe3l OR METYORKS

FROGRAMMER

Figure 1 Overview of Modbus Protocol Application
1.1.1 Transactions on Modbus Networks

Standard Modbus ports on Modicon controllers use an RS-232C compatible serial interface that
defines connector pinouts, cabling, signal levels, transmission baud rates, and parity checking.
Controllers can be networked directly or via modems.

Controllers communicate using a master-slave technique, in which only one device (the master)
can initiate transactions (queries). The other devices (the slaves) respond by supplying the
requested data to the master, or by taking the action requested in the query. Typical master
devices include host processors and programming panels. Typical slavesinclude programmable

http://www.modicon.com/techpubs/intr7.html (2 of 5) [1/11/2000 10:36:08 PM]

Modbus Protocol

controllers.

The master can address individual slaves, or can initiate a broadcast message to all slaves.
Slaves return a message (response) to queries that are addressed to them individually.
Responses are not returned to broadcast queries from the master.

The Modbus protocol establishes the format for the master's query by placing into it the device
(or broadcast) address, a function code defining the requested action, any data to be sent, and an
error-checking field. The slave's response message is also constructed using Modbus protocol. It
contains fields confirming the action taken, any data to be returned, and an error-checking field.
If an error occurred in receipt of the message, or if the slave is unable to perform the requested
action, the slave will construct an error message and send it as its response.

1.1.2 Transactions on Other Kinds of Networks

In addition to their standard M odbus capabilities, some Modicon controller models can
communicate over Modbus Plus using built-in ports or network adapters, and over MAP, using
network adapters.

On these networks, the controllers communicate using a peer-to-peer technique, in which any
controller can initiate transactions with the other controllers. Thus a controller may operate
either asa slave or as a master in separate transactions. Multiple internal paths are frequently
provided to allow concurrent processing of master and slave transactions.

At the message level, the Modbus protocol still applies the master-slave principle even though
the network communication method is peer-to-peer. If a controller originates a message, it does
S0 as amaster device, and expects a response from a slave device. Similarly, when a controller
receives amessage it constructs a slave response and returns it to the originating controller.

1.1.3 The Query-Response Cycle

e WERETegE EoET Btk e ‘

DCevice Scddess DCevice Scddess

Funchon 1Zock: Funchon Sock

[EmtbEiR - [EmHEER -
— DamE Byms — — DamE Bubes —

Ennr “THeCH EHnr I”HecCk

- FEfponse Nressoe oo Siow e

Figure 2 Master-Slave Query-Response Cycle
The Query

The function code in the query tells the addressed slave device what kind of action to perform.
The data bytes contain any additional information that the slave will need to perform the
function. For example, function code 03 will query the slave to read holding registers and
respond with their contents. The data field must contain the information telling the slave which

http://www.modicon.com/techpubs/intr7.html (3 of 5) [1/11/2000 10:36:08 PM]

Modbus Protocol

register to start at and how many registersto read. The error check field provides a method for
the dave to validate the integrity of the message contents.

The Response

If the slave makes a normal response, the function code in the response is an echo of the
function code in the query. The data bytes contain the data collected by the slave, such as
register values or status. If an error occurs, the function code is modified to indicate that the
response is an error response, and the data bytes contain a code that describes the error. The
error check field allows the master to confirm that the message contents are valid.

1.2 Two Seria Transmission Modes

Controllers can be setup to communicate on standard Modbus networks using either of two
transmission modes: ASCII or RTU. Users select the desired mode, along with the serial port
communication parameters (baud rate, parity mode, etc), during configuration of each
controller. The mode and serial parameters must be the same for all devices on a Modbus
network.

The selection of ASCII or RTU mode pertains only to standard Modbus networks. It defines the
bit contents of message fields transmitted serially on those networks. It determines how
information will be packed into the message fields and decoded.

On other networks like MAP and Modbus Plus, Modbus messages are placed into frames that
are not related to serial tranasmission. For example, arequest to read holding registers can be
handled between two controllers on Modbus Plus without regard to the current setup of either
controller's serial Modbus port.

1.2.1 ASCII Mode

When controllers are setup to communicate on a Modbus network using ASCII (American
Standard Code for Information Interchange) mode, each eight-bit byte in a message is sent as
two ASCII characters. The main advantage of this mode isthat it allowstime intervals of up to
one second to occur between characters without causing an error.

Coding System

V Hexadecimal, ASCII characters0...9,A ... F

V One hexadecimal character contained in each ASCI| character of the message
Bits per Byte

V 1 start bit

V 7 data bits, least significant bit sent first

V 1 bit for even / odd parity-no bit for no parity

V 1 stop bit if parity is used-2 bitsif no parity

Error Check Field

http://www.modicon.com/techpubs/intr7.html (4 of 5) [1/11/2000 10:36:08 PM]

Modbus Protocol

V Longitudinal Redundancy Check (LRC)
1.2.2 RTU Mode

When controllers are setup to communicate on a Modbus network using RTU (Remote
Terminal Unit) mode, each eight-bit byte in a message contains two four-bit hexadecimal
characters. The main advantage of this mode is that its greater character density allows better
data throughput than ASCI| for the same baud rate. Each message must be transmitted in a
continuous stream.

Coding System

V Eight-bit binary, hexadecimal 0...9,A ... F
V Two hexadecimal characters contained in each eight-bit field of the message
Bits per Byte

V 1 start bit

V 8 data bits, least significant bit sent first

V 1 bit for even / odd parity-no bit for no parity
V 1 stop bit if parity is used-2 bitsif no parity
Error Check Field

V Cyclical Redundancy Check (CRC)

1.3 Modbus Message Framing

In either of the two serial transmission modes (ASCII or RTU), aModbus message is placed by
the transmitting device into a frame that has a known beginning and ending point. This allows
receiving devicesto begin at the start of the message, read the address portion and determine
which device is addressed (or all devices, if the message is broadcast), and to know when the
message is completed. Partial messages can be detected and errors can be set as a resullt.

On networks like MAP or Modbus Plus, the network protocol handles the framing of messages
with beginning and end delimiters that are specific to the network. Those protocols also handle
delivery to the destination device, making the Modbus address field imbedded in the message
unnecessary for the actual transmission. (The Modbus address is converted to a network node
address and routing path by the originating controller or its network adapter.)

1.3.1 ASCII Framing

In ASCII mode, messages start with acolon (:) character (ASCII 3A hex), and end with a
carriage return-line feed (CRLF) pair (ASCII 0D and OA hex).

The allowable characters transmitted for al other fields are hexadecimal 0... 9, A ... F.
Networked devices monitor the network bus continuously for the colon character. Wh

http://www.modicon.com/techpubs/intr7.html (5 of 5) [1/11/2000 10:36:08 PM]

Chapter 2
Data and Control Functions

Vv [] Modbus Function Formats
\Y [] Function Codes

v L IRead coil status

\ D Read Input Status

V DRead Holding Registers

V D Read Input Registers

V D Force Single Cail

V DPr&eet Single Register

Vv D Read Exception Status

\Y [] Fetch Comm Event Counter
\ D Fetch Comm Event Log

V DForce Multiple Coils

V DPreset Multiple Registers
Vv DReport Slave D

\Y DRead General Reference
\Y DWrite General Reference
V DMask Write 4x Register

V D Read / Write 4x Registers

http://www.modicon.com/techpubs/dcon7.html (1 of 36) [1/11/2000 10:41:03 PM]

V D Read FIFO Queue

2.1 Modbus Function Formats

=

Note: Unless specified otherwise, numerical values (such as addresses, codes, or data) are
expressed as decimal valuesin the text of this section. They are expressed as hexadecimal
values in the message fields of the figures.

2.1.1 Data Addressesin Modbus M essages

All data addresses in Modbus messages are referenced to zero. The first occurrence of a data
item is addressed as item number zero. For example:

V Coil 1inaprogrammable controller is addressed as coil 0000 in the data address field of a
M odbus message

V Coil 127 decimal is addressed as coil 007E hex (126 decimal)

V Holding register 40001 is addressed as register 0000 in the data address field of the message.
The function code field already specifies a holding register operation. Therefore the 4x
reference isimplicit.

V Holding register 40108 is addressed as register 006B hex (107 decimal)
2.1.2 Field Contentsin M odbus M essages

The following tables show examples of a Modbus query and normal response. Both examples
show the field contents in hexadecimal, and also show how a message could be framed in
ASCII or in RTU mode.

Query
Field Hame Example (hex) ASCI Characters RTU &-EBit Field
Header vicolond Mone
Slave Address o0& 06 Qoon 0110
Function 0z o3 Qoo0 00711
Starting Address Hi [00 oo Q000 ooao
Starting Address Lo | BB E B 0110 1011
Mo, of Registers Hi oo oo Q000 ooao
Mo, ofRegisters Lo 03 o3 0000 0011
Eror Check LRC 2 chars) CRC (16 hits)
Trailer CR LF Mane
Total Bytes 17 8
Response

http://www.modicon.com/techpubs/dcon7.html (2 of 36) [1/11/2000 10:41:03 PM]

Field Hame Example (hex) ASCI Characters RTU &EBit Field
Header vicolond Mone

Slave Address 1] 0& Qoog 0110
Function 03 o3 Qogg 00711
Eyte Count 1] 0& Qoog 0110
Data Hi 02 o2 Qoo0 0070
Data Lo 2B 2 B Qo010 1011
Data Hi]H] oo Qo000 000
Data Lo]H] oo Qo000 000
Data Hi]H] oo Qo000 000
Data Lo 63 B 3 0110 0011
Ermor Check LRC 2 chars,) CRC {16 hits)
Trailer iZH LF Mane

Total B ytes 23 11

The master query is a Read Holding Registers request to slave device address 06. The message
requests data from three holding registers, 40108 ... 40110.

=
Note: The message specifies the starting register address as 0107 (006B hex).

The slave response echoes the function code, indicating thisis a normal response. The Byte
Count field specifies how many eight-bit data items are being returned. It shows the count of
eight-bit bytesto follow in the data, for either ASCII or RTU. With ASCII, thisvaueis half the
actual count of ASCII charactersin the data. In ASCII, each four-bit hexadecimal value requires
one ASCII character, therefore two ASCII characters must follow in the message to contain
each eight-bit data item.

For example, the value 63 hex is sent as one eight-bit byte in RTU mode (01100011). The same
value sent in ASCII mode requires two bytes, for ASCII 6 (0110110) and 3 (0110011). The
Byte Count field counts this data as one eight-bit item, regardless of the character framing
method (ASCII or RTU).

How to Use the Byte Count Field

When you construct responses in buffers, use a Byte Count value that equals the count of
eight-bit bytesin your message data. The value is exclusive of all other field contents, including
the Byte Count field.

2.1.3 Field Contents on M odbus Plus

M odbus messages sent on Modbus Plus networks are imbedded into the Logical Link Control
(LLC) level frame. Modbus message fields consist of eight-bit bytes, similar to those used with
RTU framing.

http://www.modicon.com/techpubs/dcon7.html (3 of 36) [1/11/2000 10:41:04 PM]

The Slave Address field is converted to a Modbus Plus routing path by the sending device. The
CRC field is not sent in the Modbus message, because it would be redundant to the CRC check
performed at the High-level Data Link Control (HDLC) level.

The rest of the message remains as in the standard serial format. The application software (e.g.,
MSTR blocks in controllers, or Modcom I11 in hosts) handles the framing of the message into a
network packet.

Figure 7 shows how a Read Holding Registers query would be imbedded into a frame for
Modbus Plus transmission.

HOLC LEVEL

PREAMELE | OPENING | EOCST CLOZING
SODRESE MAC ! LS FIELD CRC FLAG

Mac LEVEL

DEST ZOURCE EYTE
ADDRES: | ADDREss FLINIZTII:IN COLMT LC FIELD

LLC LEVEL

QOUTPUT | ROUTER | TRAME

FETH COUMTER |2EQUEMCE ROUTIMG PATH MODEUE FRAME MODIFIED)
MODEUE MESSAGE:
ELaVE FUMCTION ETARTIMG ETARTIMG MUMEER OF MUMEER OF
SODR CODE LOORESE HI LOORESE LO REGIETERE HI | REGIETERE LO

Figure 7 Field Contents on Modbus Plus
2.2 Function Codes

The listing below shows the function codes supported by Modicon controllers. Codes are listed
in decimal; Y indicates that the function is supported, and N indicates that it is not supported.

http://www.modicon.com/techpubs/dcon7.html (4 of 36) [1/11/2000 10:41:04 PM]

Code Mame 384 434 384 834 M3d | 984
o1 Fead Coil Stats Y Y i ¥ W Y
nz2 Read Input Status Y Y Y Y i Y
03 Read Holding Registers Y Y Y Y i Y
04 Read Input Begisters Y Y Y Y i Y
05 Force Single Caoil Y Y Y Y i Y
06 Preset Single Register Y Y Y Y i Y
oy Read Excepton S@tus Y Y Y Y i Y
03 Diagnostcs see page MO TAG

09 Program 454 M Y M M M M
10 Pall 424 M Y M M M M
11 Fetch Comm Event Counter Y M i M M Y
12 Fetch Comm. Event Log Y M Y M M Y
13 Program Controller Y M Y M M Y
14 Paoll Gontroller Y N i M M Y
15 Force Multiple Coils Y Y Y Y i Y
16 Preset Multiple Registers Y Y Y Y i Y
17 Report Slave (D Y Y Y Y i Y
15 Program S54/M54 M N M ¥ W M
19 Reset Comm, Link M M M ¥ W M
20 Read General Reference M M M ¥ W M
21 Write General Reference M M i M M Y
22 Mask "Write 4x Begister M M M M M (1
23 Fead "Write 4x Registers M N M M M i
24 Fead FIFO Queuye M N M M M i

(1) =Function is supported in 954-F35 only,

2.2.1 01 Read Coil Status

Reads the ON / OFF status of discrete outputs (Ox references, coils) in the slave. Broadcast is
not supported. The maximum parameters supported by various controller models are listed on

page .
Query

The query message specifies the starting coil and quantity of coilsto be read. Coils are
addressed starting at zero-coils 1 ... 16 are addressed as O ... 15.

Here is an example of aquery to read coils 20 ... 56 from slave device 17:

http://www.modicon.com/techpubs/dcon7.html (5 of 36) [1/11/2000 10:41:04 PM]

Field Hame Example Hex)
Slave Address 11
Function 0
Startng Address Hi Q0o
Startng Address Lo 13
Mumber of Paints Hi ao
Mumber of Paints Lo 25
Emor Check (LRZ or CRC -

Response

The cail status in the response message is packed as one coil per bit of the datafield. Statusis
indicated as: 1 = ON; 0 = OFF. The LSB of the first data byte contains the coil addressed in the
guery. The other coils follow toward the high order end of this byte, and from low order to high
order in subsequent bytes.

If the returned coil quantity is not a multiple of eight, the remaining bitsin the final data byte
will be padded with zeros (toward the high order end of the byte). The Byte Count field
specifies the quantity of complete bytes of data.

Here is an example of aresponse to the query:

Field Hame Example Hex)
Slave Address 11
Function 0
Byte Count ns
Data (Cails 27 .., 200 =
Data (Cails 35 .., 28) GE
Data (Cails 43 .., 36) B2
Data (Cails 51 .., 44 Qe
Data (Cails 56 .., &5 16
Emor Check (LRZ or CRC -

The status of coils 27 ... 20 is shown as the byte value CD hex, or binary 1100 1101. Coil 27 is
the MSB of this byte, and coil 20 isthe LSB. Left to right, the status of coils 27 ... 20 is
ON-ON-OFF-OFF-ON-ON-OFF-ON.

By convention, bits within a byte are shown with the MSB to the left, and the LSB to the right.
Thus the coilsin thefirst byte are 27 ... 20, from left to right. The next byte has coils 35 ... 28,
left to right. Asthe bits are transmitted serially, they flow from LSB to MSB: 20...27,28. ..
35, and so on.

In the last data byte, the status of coils 56 ... 52 is shown as the byte value 1B hex, or binary
0001 1011. Cail 56 isin the fourth bit position from the left, and coil 52 isthe LSB of this byte.

http://www.modicon.com/techpubs/dcon7.html (6 of 36) [1/11/2000 10:41:04 PM]

The status of coils56 ... 52 is: ON-ON-OFF-ON-ON.

=
Note: The three remaining bits (toward the high-order end) are zero-filled.
2.2.2 02 Read I nput Status

Reads the ON / OFF status of discrete inputs (1x references) in the slave. Broadcast is not
supported. The maximum parameters supported by various controller models are listed on page

Query

The query message specifies the starting input and quantity of inputs to be read. Inputs are
addressed starting at zero-inputs 1 ... 16 are addressed as 0 ... 15.

Hereis an example of arequest to read inputs 10197 ... 10218 from slave device 17:

Field Mame Example (Hex)
Slave Address 11
Function oz
Saring Address Hi a0
Startng Address Lo i
Murnber of Points Hi oo
Murnber of Points Lo 16
Emor Check (LRC or CRC) -

Response

The input status in the response message is packed as one input per bit of the data field. Status
isindicated as: 1 = ON; 0 = OFF. The LSB of the first data byte contains the input addressed in
the query. The other inputs follow toward the high order end of this byte, and from low order to
high order in subsequent bytes.

If the returned input quantity is not amultiple of eight, the remaining bitsin the final data byte
will be padded with zeros (toward the high order end of the byte). The Byte Count field
specifies the quantity of complete bytes of data.

Here is an example of aresponse to the query:

Field Hame Example {Hex)
Slave Address 11
Function I,
Byte Count 03

Dat dnputs 10204 ... 10197 | AC
Dat dnputs 10212 ... 10205 | DB

http://www.modicon.com/techpubs/dcon7.html (7 of 36) [1/11/2000 10:41:04 PM]

Dat dnputs 10215 ... 10213 | 35
Eror Check (LRC or GRC) | —

The status of inputs 10204 ... 10197 is shown as the byte value AC hex, or binary 1010 1100.
Input 10204 isthe MSB of this byte, and input 10197 isthe LSB. Left to right, the status of
inputs 10204 ... 10197 is ON-OFF-ON-OFF-ON-ON-OFF-OFF.

The status of inputs 10218 ... 10213 is shown as the byte value 35 hex, or binary 0011 0101.
Input 10218 isin the third bit position from the left, and input 10213 is the L SB. The status of
inputs 10218 ... 10213 is: ON-ON-OFF-ON-OFF-ON.

=
Note: The two remaining bits (toward the high order end) are zero-filled.
2.2.3 03 Read Holding Registers

Reads the binary contents of holding registers (4x references) in the save. Broadcast is not
supported. The maximum parameters supported by various controller models are listed on page

Query

The query message specifies the starting register and quantity of registers to be read. Registers
are addressed starting at zero- registers 1 ... 16 are addressed as 0 ... 15.

Here is an example of arequest to read registers 40108 ... 40110 from slave device 17:

Field Hame Example Hex)
Slave Address 11
Function 03
Startng Address Hi Q0o
Startng Address Lo B
Mumber of Paints Hi ao
Mumber of Paints Lo 03
Emor Check (LRZ or CRC -

Response

The register datain the response message are packed as two bytes per register, with the binary
contents right justified within each byte. For each register, the first byte contains the high order
bits and the second contains the low order bits.

Datais scanned in the ave at the rate of 125 registers per scan for 984-X8X controllers
(984-685, etc), and at the rate of 32 registers per scan for all other controllers. The responseis
returned when the data is completely assembled.

http://www.modicon.com/techpubs/dcon7.html (8 of 36) [1/11/2000 10:41:04 PM]

Here is an example of aresponse to the query:

Field Hame Example (Hex)
Slave Address 11
Function a3
Eyte Count]3]
Data Hi Begister 40708 oz
Data Lo Begister 40105 2B
Data Hi Begister 40705 o
Data Lo Begister 40105 o
Data Hi Begister 40710 o
Data Lo Begister 40110 G4
Errar Check (LRC or CRC —

The contents of register 40108 are shown as the two byte values of 02 2B hex, or 555 decimal.
The contents of registers 40109 ... 40110 are 00 00 and 00 64 hex, or 0 and 100 decimal.

2.2.4 04 Read Input Registers

Reads the binary contents of input registers (3X references) in the dave. Broadcast is not
supported. The maximum parameters supported by various controller models are listed on page

Query

The query message specifies the starting register and quantity of registers to be read. Registers
are addressed starting at zero- registers 1 ... 16 are addressed as O ... 15.

Hereis an example of arequest to read register 30009 from slave device 17:

Field Hame Example (Hex)
Slave Address 11
Function 04
Starting Address Hi o
Starting Address Lo s
Murber of Points Hi aa
Murnber of Points Lo a1
Errar Check (LRC or CRC —

Response

The register datain the response message are packed as two bytes per register, with the binary
contents right justified within each byte. For each register, the first byte contains the high-order
bits and the second contains the low-order bits.

http://www.modicon.com/techpubs/dcon7.html (9 of 36) [1/11/2000 10:41:04 PM]

Datais scanned in the dave at the rate of 125 registers per scan for 984-X8X controllers
(984-685, etc), and at the rate of 32 registers per scan for all other controllers. The responseis
returned when the data is completely assembled.

Here is an example of aresponse to the query on the opposite page:

Field Hame Example (Hex)
Slave Address 11
Function 04
Eyte Count oz
Data Hi Begister 30005 o
Data Lo Begister 30005 I F)
Errar Check (LRC or CRC —

The contents of register 30009 are shown as the two byte values of 00 OA hex, or 10 decimal.
2.2.505 Force Single Cail

Forces asingle coil (Ox reference) to either ON or OFF. When broadcast, the function forces the
same coil referencein all attached slaves. The maximum parameters supported by various
controller models are listed on page .

=

Note: The function will override the controller's memory protect state and the coil's disable
state. The forced state will remain valid until the controller's logic next solves the coil. The coil
will remain forced if it is not programmed in the controller's logic.

Query

The query message specifies the coil reference to be forced. Coils are addressed starting at
zero-coil 1 isaddressed as 0.

The reguested ON / OFF state is specified by a constant in the query datafield. A value of FF
00 hex requests the coil to be ON. A value of 00 00 requestsit to be OFF. All other values are
illegal and will not affect the coil.

Hereis an example of arequest to force coil 173 ON in slave device 17:

Field Hame Example (Hex)
Slave Address 11
Function 05
Coil Address Hi aa
Caoil Address Lo Az
Force Data Hi FF
Faorce Data Lo aa
Errar Check (LRC or CRC —

http://www.modicon.com/techpubs/dcon7.html (10 of 36) [1/11/2000 10:41:04 PM]

Response
The normal response is an echo of the query, returned after the coil state has been forced.

Here is an example of aresponse to the query:

Field Hame Example (Hex)
Slave Address 11
Function 05
Coil Address Hi aa
Caoil Address Lo Az
Force Data Hi FF
Faorce Data Lo aa
Errar Check (LRC or CRC —

2.2.6 06 Preset Single Register

Presets a value into a single holding register (4x reference). When broadcast, the function
presets the same register reference in all attached slaves. The maximum parameters supported
by various controller models are listed on page .

=

Note: The function will override the controller's memory protect state. The preset value will
remain valid in the register until the controller'slogic next solves the register contents. The
register's value will remain if it is not programmed in the controller'slogic.

Query

The query message specifies the register reference to be preset. Registers are addressed starting
at zero-register 1 is addressed as 0.

The reguested preset value is specified in the query data field. M84 and 484 controllers use a
10-bit binary value, with the six high order bits set to zeros. All other controllers use 16-bit
values.

Here is an example of arequest to preset register 40002 to 00 03 hex in slave device 17:

Field Hame Example Hex)
Slave Address 11
Function 1]
Register Address Hi Q0o
Register Address Lo 01
Preset Dat Hi ao

http://www.modicon.com/techpubs/dcon7.html (11 of 36) [1/11/2000 10:41:04 PM]

Preset Dat Lo | 03
Eror Check (LRC or GRC) | —

Response

The normal response is an echo of the query, returned after the register contents have been
preset.

Here is an example of aresponse to the query:

Field Hame Example Hex)
Slave Address 11
Function 1]
Register Address Hi Q0o
Register Address Lo 01
Preset Dat Hi ao
Preset Data Lo 03
Emor Check (LRZ or CRC -

2.2.7 07 Read Exception Status

Reads the contents of eight Exception Status coils within the slave controller. Certain coils have
predefined assignments in the various controllers. Other coils can be programmed by the user to
hold information about the contoller's status-e.g., machine ON/OFF, heads retracted, safeties
satisfied, error conditions exist, or other user-defined flags. Broadcast is not supported.

The function provides a simple method for accessing this information, because the Exception
Cail references are known (no coil reference is needed in the function). The predefined
Exception Coil assignments are:

Controller Model Coil Assignment
MS4, 1841384, 554, 984 1.8 User-defined
454 257 Battery Stats
258 ... 264 User-defined
o84 7E1 Battery Stats
7B2 Memory Protect Satus
TE3 RIO Health Sas
=2 P User-defined

Query

Here is an example of arequest to read the exception status in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (12 of 36) [1/11/2000 10:41:04 PM]

Field Hame Example Hex)
Slave Address 11
Function ar
Emor Check (LRZ or CRC -

Response

The normal response contains the status of the eight Exception Status coils. The coils are
packed into one data byte, with one bit per coil. The status of the lowest coil referenceis
contained in the least significant bit of the byte.

Here is an example of aresponse to the query:

Field Mame Example (Hex)
Slave Address 11
Function a7
Coil Dat &0
Emor Check (LRC or CRC) -

In this example, the coil datais 6D hex (0110 1101 binary). Left to right, the coils are
OFF-ON-ON-OFF-ON-ON-OFF-ON. The status is shown from the highest to the lowest
addressed coil.

If the controller is a 984, these bits are the status of coils 8 ... 1. If the controller is a484, these
bits are the status of coils 264 ... 257. In this example, coil 257 is ON, indicating that the
controller's batteries are OK.

2.2.8 11 (OB Hex) Fetch Comm Event Counter

Returns a status word and an event count from the slave's communications event counter. By
fetching the current count before and after a series of messages, a master can determine whether
the messages were handled normally by the slave. Broadcast is not supported.

The controller's event counter isincremented once for each successful message completion. Itis
not incremented for exception responses, poll commands, or fetch event counter commands.

The event counter can be reset by means of the Diagnostics function (code 08), with a
subfunction of Restart Communications Option (code 00 01) or Clear Counters and Diagnostic
Register (code 00 0A).

Query

Here is an example of arequest to fetch the communications event counter in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (13 of 36) [1/11/2000 10:41:04 PM]

Field Hame Example Hex)
Slave Address 11
Function e
Emor Check (LRZ or CRC -

Response

The normal response contains a two-byte status word, and a two-byte event count. The status
word will be all ones (FF FF hex) if a previously issued program command is still being
processed by the slave (a busy condition exists). Otherwise, the status word will be all zeros.

Here is an example of aresponse to the query:

Field Mame Example (Hex)
Slave Address 11
Function =
S@ms Hi FF
Status Lo FF
Event Count Hi 01
Event Count Lo 0s
Emor Check (LRC or CRC) -

In this example, the status word is FF FF hex, indicating that a program function is still in
progress in the slave. The event count shows that 264 (01 08 hex) events have been counted by
the controller.

2.2.9 12 (0C Hex) Fetch Comm Event Log

Returns a status word, event count, message count, and afield of event bytes from the slave.
Broadcast is not supported. The status word and event count are identical to that returned by the
Fetch Communications Event Counter function (11, OB hex).

The message counter contains the quantity of messages processed by the slave since its last
restart, clear counters operation, or power-up. This count isidentical to that returned by the
Diagnostic function (code 08), subfunction Return Bus Message Count (code 11, 0B hex).

The event bytesfield contains 0 ... 64 bytes, with each byte corresponding to the status of one
Modbus send or receive operation for the slave. The events are entered by the slave into the
field in chronological order. Byte O is the most recent event. Each new byte flushes the oldest
byte from the field.

Query
Here is an example of arequest to fetch the communications event log in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (14 of 36) [1/11/2000 10:41:04 PM]

Field Hame Example Hex)
Slave Address 11
Function 0
Emor Check (LRZ or CRC -

Response

The normal response contains a two-byte status word field, atwo-byte event count field, a
two-byte message count field, and afield containing O ... 64 bytes of events. A byte-count field
defines the total length of the datain these four fields.

Here is an example of aresponse to the query:

Field Mame Example (Hex)
Slave Address 11
Function ac:
Byte Count as
Status Hi ao
Status Lo ao
Event Count Hi 01
Event Count Lo 0s
hMessage Count Hi 01
Message Count Lo 21
Event O 20
Event 1 ao
Emor Check (LRC or CRC) -

In this example, the status word is 00 00 hex, indicating that the slave is not processing a
program function. The event count shows that 264 (01 08 hex) events have been counted by the
slave. The message count shows that 289 (01 21 hex) messages have been processed.

The most recent communications event is shown in the Event 0 byte. Its contents (20 hex) show
that the slave has most recently entered the Listen Only Mode.

The previous event is shown in the Event 1 byte. Its contents (00 hex) show that the Slave
received a Communications Restart.

What the Event Bytes Contain

An event byte returned by the Fetch Communications Event Log function can be any one of
four types. The typeis defined by bit 7 (the high-order bit) in each byte. It may be further
defined by bit 6.

Slave M odbus Recelve Event

http://www.modicon.com/techpubs/dcon7.html (15 of 36) [1/11/2000 10:41:04 PM]

Thistype of event byte is stored by the slave when a query message isreceived. It is stored
before the slave processes the message. This event is defined by bit 7 set to alogic 1. The other
bitswill be set to alogic 1 if the corresponding condition is TRUE. The bit layout is:

m
=

Contents

Mot Used
Cammunicatons Emor
Mot Used

Mot Used

Character Cwerrin

Cumenty in Listen Only Mode

Broadcast Peceived
,

=@M R WA =] D

Slave M odbus Send Event

Thistype of event byte is stored by the slave when it finishes processing a query message. It is
stored if the slave returned anormal or exception response, or no response. Thisevent is
defined by bit 7 set to alogic O, with bit 6 set to a 1. The other bits will be set to alogic 1 if the
corresponding condition is TRUE. The bit layout is:

Bit Contents

0 Read Exception Zent Excepton Codes 1..3)

1 Slave Short Exception Zent Excepton Code 4)

2 Slave Busy Ewxception Zent Excepton Codes & and B)
3 Slave Program MAK Exception Zent Excepton Code 7)
4 Wiite Timeout Erar Occutred

& Cyrmenty in Listen Only Mode

£ 1

7 0

Slave Entered Listen Only Mode

Thistype of event byte is stored by the lave when it entersthe Listen Only Mode. The event is
defined by a contents of 04 hex. The bit layout is:

Bit Contents
0 0
1 0
2 1
3 0
4 0

http://www.modicon.com/techpubs/dcon7.html (16 of 36) [1/11/2000 10:41:04 PM]

Slave I nitiated Communication Restart

Thistype of event byte is stored by the slave when its communications port is restarted. The
slave can be restarted by the Diagnostics function (code 08), with subfunction Restart
Communications Option (code 00 01).

That function also places the slave into a Continue on Error or Stop on Error mode. If the slave
Is placed into Continue on Error mode, the event byte is added to the existing event log. If the
slaveis placed into Stop on Error mode, the byte is added to the log and the rest of thelog is
cleared to zeros. The event is defined by a contents of zero. The bit layout is:

m
=

Contents

=@M R WA =] D
o I e 1 R e s Y e O Y s)

2.2.10 15 (OF Hex) Force Multiple Coils

Forces each coil (Ox reference) in a sequence of coilsto either ON or OFF. When broadcast, the
function forces the same coil referencesin all attached slaves. The maximum parameters
supported by various controller models are listed on page .

=

Note: The function will override the controller's memory protect state and a coil's disable state.
The forced state will remain valid until the controller'slogic next solves each coil. Coils will
remain forced if they are not programmed in the controller'slogic.

Query

The query message specifies the coil references to be forced. Coils are addressed starting at
zero-coil 1 isaddressed as 0.

The reguested ON / OFF states are specified by contents of the query datafield. A logical 1ina
bit position of the field requests the corresponding coil to be ON. A logical O requestsit to be
OFF.

http://www.modicon.com/techpubs/dcon7.html (17 of 36) [1/11/2000 10:41:04 PM]

The following page shows an example of a request to force a series of ten coils starting at coil
20 (addressed as 19, or 13 hex) in slave device 17.

The query data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary). The binary
bits correspond to the coilsin the following way:

Bit:1100110100000001
Coil: 2726252423222120-- - - - - 2928

Thefirst byte transmitted (CD hex) addresses coils 27 ... 20, with the least significant bit
addressing the lowest coil (20) in this set.

The next byte transmitted (01 hex) addresses coils 29 and 28, with the least significant bit
addressing the lowest coil (28) in this set. Unused bits in the last data byte should be zero-filled.

Field Hame Example {Hex)
Slave Address 11
Function aF
Coil Address Hi aa
Caoil Address Lo 13
Quantty of Coils Hi an
Guantty of Coils Lo &
Byte Count 02
Force Data Hi(Coils 27 ... 200 D
Force Data Lo (Caoils 29 .., 28) 01
Emor Check (LRC or CRC) -

Response

The normal response returns the slave address, function code, starting address, and quantity of
coilsforced. Here is an example of aresponse to the query shown above:

Field Hame Example (Hex)
Slave Address 11
Function aF
Coil Address Hi aa
Caoil Address Lo 13
Guantity of Coils Hi o
Guantity of Coils Lo I F)
Errar Check (LRC or CRC —

2.2.11 16 (10 Hex) Preset Multiple Registers
Presets values into a sequence of holding registers (4x references). When broadcast, the

http://www.modicon.com/techpubs/dcon7.html (18 of 36) [1/11/2000 10:41:04 PM]

function presets the same register references in al attached slaves. The maximum parameters
supported by various controller models are listed on page .

=

Note: The function will override the controller's memory protect state. The preset values will
remain valid in the registers until the controller's logic next solves the register contents. The
register values will remain if they are not programmed in the controller'slogic.

Query

The query message specifies the register references to be preset. Registers are addressed starting
at zero-register 1 is addressed as 0.

The requested preset values are specified in the query datafield. M84 and 484 controllers use a
10-bit binary value, with the six high order bits set to zeros. All other controllers use 16-bit
values. Datais packed as two bytes per register.

Here is an example of arequest to preset two registers starting at 40002 to 00 OA and 01 02 hex,
in slave device 17:

Field Hame Example Hex)
Slave Address 11
Function 10
Startng Address Hi Q0o
Startng Address Lo 01
Mumber of Registers Hi Q0o
Mumber of Begisters Lo n2
Byte Count 04
Data Hi ao
Data Lo 04
Data Hi 1
Data Lo 02
Emor Check (LRZ or CRC -

Response

The normal response returns the slave address, function code, starting address, and quantity of
registers preset. Here is an example of aresponse to the query shown above.

http://www.modicon.com/techpubs/dcon7.html (19 of 36) [1/11/2000 10:41:04 PM]

Field Hame Example Hex)
Slave Address 11
Function 10
Startng Address Hi Q0o
Startng Address Lo 01
Mumber of Registers Hi Q0o
Mumber of Begisters Lo n2
Emor Check (LRZ or CRC -

2.2.12 17 (11 Hex) Report Slave D

Returns a description of the type of controller present at the slave address, the current status of
the slave Run indicator, and other information specific to the slave device. Broadcast is not
supported.

Query

Here is an example of arequest to report the ID and status of slave device 17:

Field Hame Example Hex)
Slave Address 11
Function 11
Emor Check (LRZ or CRC -

Response

The format of anormal response is shown below. The data contents are specific to each
controller type.

Field Hame Example {Hex)
Slave Address Echo Slave Address
Function 11
Byte Count Device-specific
Slave ID Device-specific
Fun Indicator Stats 00 =0FF

FF =
additonal Dat, ... Device-specific
Emor Check (LRC or CRC) -

Summary of Slave IDs

These are the Slave ID codes returned by Modicon controllersin the first byte of the datafield:

http://www.modicon.com/techpubs/dcon7.html (20 of 36) [1/11/2000 10:41:04 PM]

Slave ID Controller
1] Micro 54

1 454

2 154135354

3 £54

g 954

9 954

184/ 384

The 184 or 384 controller returns a byte count of either 4 or 74 (4A hexadecimal). If the
controller's J347 Modbus Slave Interface is setup properly, and itsinternal PIB table is normal,
the byte count will be 74. Otherwise the byte count will be 4. The four bytes that are always
returned are:

B yte Contents
Slave (D@2 for 184384 see bytes Jand 4 for further definiton
2 RUM indicatar status 0 =0FF
FF =0N
Jand 4 Status word
Bit0 1]
Bit 1 0 =pemory Protect OFF
1 =femory Protect ON
Bits 2 and 3 0,0 =184 Contraller
1, 0 =384 Contraller
Bits 4 ... 15 Uhused

Bytes5 ... 10, returned for a correct J347 setup and normal PIB, are:

Byte Content

fand 6 FIE wmbhle staring address
Tand g Cantraller setial number
Sand 10 Executive |D

Bytes 11 ... 74 contain the PIB table. Thisdataisvalid only if the controller is running (as
shown in Byte 2). Thetable is asfollows:

http://www.modicon.com/techpubs/dcon7.html (21 of 36) [1/11/2000 10:41:04 PM]

B yte Content

11and 12 Mamimum gquantty of oufput coils

13 and 14 Cutput coil enahble @hle

15 and 16 Address ofinput coilfrun &hle

17 and 13 Guantty ofinput coils

19 and 20 Inputcoil enable @hle

21and 22 First latch number multple of 16)

23and 24 Last latch number ultple of 16)

25 and 26 Address ofinput registers

27 and 28 Cuantty ofinput registers

29 and 30 Cuantty of output and holding registers

31and 32 Address ofuser loygic

33and 34 Address of output coil BaM &hle

35 and 36 Functan inhibit mask

37 and 38 Address of extended functon routine

39 and 40 Address ofdata transfer routine

41 and 42 Address of raffic cop

43 and 44 Urnused

45 and 46 Functan inhibit mask

47 and 43 Address of & Mode history &hle

49 and &0 Regquest whle for DX prnter

£1and 52 Cuantty of sequence groups

f3and 54 Address of sequence image &hle

£hand 56 Address of sequence FAM

&7 and &3 Guantty of S0XX registers

&9 and 60 Address of S0xK tahble

G1and 62 Address of output coil BaM image

B3 and 64 Address ofinput BaM image

G5 and 66 Delaved output start group

GY and 63 Delaved output end group

B9 and V0 Watchdog line

“land 72 Rahk Address of latches

F3and 74 Cuantty ofdelaved output groups
584

The 584 controller returns a byte count of 9, asfollows:

http://www.modicon.com/techpubs/dcon7.html (22 of 36) [1/11/2000 10:41:04 PM]

Byte | Contents

1 Slave D 3
2 RUM indicator status 0 =0FF
FF =0N
3 Suantty of 4K sectons of page 0 memory
4 Guantty of 1K sectons of state RaM
& Cuantty of segments of uger oygic
G High byte of the machine st&te word configuraton wble word 1071, 65 hew)
Bit 15 MZE of byte) Port 1 setup
Bit 14 Port 2 setup
Bit 13 Part 1address set
Bit 12 Paort 2 address set
Bit 11 nassigned
Bit 10 0 =Constand Sweep OFF
1 =Constand Sveeep ON
Bit9 0 =Zingle Sweep OFF
1=Zingle Syeeep ON
G Bita 0 =24-hit nodes
1 =16-hit nodes
v Love byte of the machine state wond
Bit ¥ 1 =Poveer ON
should never =0 (OFF)
Bit & 0 =RUM indicator ON
1 =RUM indicator OFF
Bito 0 =pemory Protect ON
1 =femory Protect OFF
Eit 4 0 =HBattery OK
1 =Battery Mot OK
Bits 3 ... 0 nassigned

High byte of the machine stop code {configuraton thle word 105, B9 hew

Bit 15 MZE of byte) Perpheral port stop fcontrolled stop)

Bit 14 nassigned

Bit 13 Cim avrareness

Bit 12 legal perpheral interventon

Bit 11 Multirate solve @hle invalid

Bit 10 Start of Mode did notstart segment

Bit 9 State RAM test failed

Bita Mo End of Logic detected, or bad gquant-

v of segments

http://www.modicon.com/techpubs/dcon7.html (23 of 36) [1/11/2000 10:41:04 PM]

g Love byte of the machine stop code
Bit ¥ MZE of byte) Watchdog tmer expired
Bit& Real tme clock errar
Bito CPU diagnostc failed
Bit 4 Invalid tafic cop twpe
Bit3 Invalid node type
Bit2 Logic checksum emor
Bit 1 Backup checksum emor
BitD legal configuraton

984
The 984 controller returns a byte count of 9, asfollows:

Byte | Contents

1 Slave D 9
2 RUM indicator status 0 =0FF
FF =0N
3 Suantty of 4K sectons of page 0 memory
4 Guantty of 1K sectons of state RaM
& Cuantty of segments of uger oygic
G High byte of the machine st&te word configuraton wble word 1071, 65 hew)
Bit 15 MZE of byte) nassigned
Bitz 14 ... 11 nassigned
Bit 10 0 =Constand Sweep OFF
1 =Constand Sveeep ON
Bit9 0 =Zingle Sweep OFF
1 =Single Sweep ON
Bita 0 =24-hit nodes
1 =16-hit nodes
v Love byte of the machine state wond
Bit ¥ MZE of byte) 1 =Poyer ON
should never =00 OFF)
Bit & 0 =RUM indicator ON
1 =RUM indicator OFF
Bito 0 =pemory Protect ON
1 =femory Protect OFF
Eit 4 0 =HBattery OK
1 =Battery Mot OK
Bits 3 ... 1 nassigned
BitD 0 =MD Memory dovensize

http://www.modicon.com/techpubs/dcon7.html (24 of 36) [1/11/2000 10:41:04 PM]

v BitD 1 =hemory Dovensize

=

Note: Bit 0 of the Machine State word defines the use of the memory downsize valuesin words
99, 100, and 175 (63, 64, and AF hexadecimal) of the configuration table. If bit 0 = logic 1,
downsizing is calculated as follows:

Page 0 size (16-bit words) = (Word 99 * 4096) - (Word 175 |lo byte * 16)
State table size (16-bit words) = (Word 100 * 1024) - (Word 175 hi byte * 16)

Byte | Contents

g High byte of the machine stop code {configuraton thle word 105, B9 hew

Bit 15 MZE of byte) Perpheral port stop fcontrolled stop)

Bit 14 G544/B1:) Estended memorny parity failure

Bit 14 (Other 954 Bad D taffic cop

Bit 13 Cim avrareness

Bit 12 legal perpheral interventon

Bit 11 Bad segment scheduler thle

Bit 10 Start of Mode did notstart segment

Bit 9 State RAM test failed

Bita Mo End of Logic detected, or bad
quantty of segments

g Love byte of the machine stop code

Bit ¥ MZE of byte) Watchdog tmer expired

Bit& Real tme clock errar

BitSs (A54A/Bx) CPU diagnostc failed

Bits (Other 954) Bad coil used whble

Eit 4 =903 remote 1O head failure

Bit3 Invalid node type

Bit2 Logic checksum emor

Bit 1 Zail disahled while in RUN mode

BitD legal configuraton

Micro 84

The Micro 84 controller returns a byte count of 8, as follows:

http://www.modicon.com/techpubs/dcon7.html (25 of 36) [1/11/2000 10:41:04 PM]

Byte | Contents

Slave D 1]
2 RUM indicator status 0 =0FF
FF =0N
Cyment port number
Memorny size 1 =1K
2 =2K
& Unugsed @l zers)

484

The 484 controller returns a byte count of 5, asfollows:

B yte Contents
Slave D 1
2 RUM indicator status 0 =0FF
FF =0N
3 System state
4 First configuration hyte
& Second configuraton byte

884
The 884 controller returns a byte count of 8, asfollows:

Byte | Contents

1 Slave D g
2 RUM indicator status 0 =0FF
FF =0N
3 Cyment port number
4 Size of uger logic plus state BaM in kbytes (1 word =2 bytes)
4 Reserved
G Hook hits
Bits 0 and 2 Reserved
Bit3 1 =00 notexecute standard mapper
Eit 4 1 =Test end-of-scan hooks
Bit& Reserved
BitG 1 =00 notexecute standard logic solver
Bit ¥ Reserved

7.8 Reserved

http://www.modicon.com/techpubs/dcon7.html (26 of 36) [1/11/2000 10:41:04 PM]

2.2.13 20 (14 Hex) Read General Reference

Returns the contents of registersin Extended Memory file (6x) references. Broadcast is not
supported. The function can read multiple groups of references. The groups can be separate
(noncontiguous), but the references within each group must be sequential.

Query

The query contains the standard M odbus slave address, function code, byte count, and error
check fields. Therest of the query specifies the group or groups of references to be read. Each
group is defined in a separate sub-request field which contains seven bytes:

V The reference type-one byte (must be specified as 6)

V The Extended Memory file number-two bytes (1 ... 10, 0001 ... 000A hex)
V The starting register address within the file-two bytes

V The quantity of registersto be read-two bytes

The quantity of registersto be read, combined with all other fields in the expected response,
must not exceed the allowable length of Modbus messages-256 bytes.

The available quantity of Extended Memory files depends upon the installed size of Extended
Memory in the slave controller. Each file except the last one contains 10,000 registers,
addressed as 0000 ... 270F hexadecimal (0000 - ... 9999 decimal).

For controllers other than the 984-785 with Extended Registers, the last (highest) register in the
last fileis:

Extended Memory Size Last File Last Register (Decimal)
16K, 2 B353
32K 4 2767
Bk i S535
=12 10 8303

For the 984-785 with Extended Registers, the last (highest) register in the last fileisshown in
the two tables below.

User State Extended Last Last Reg
984-785 Logic RAM Mem Size File Decimal)
with ASH785-032 | 32K 52K 0 0 0
Memory Cartridge 16K B4k, 7oK, 5 3727
with ASH7E5048 a2k, 52K 2ak, 3 4575
Memory Cartridge 2K, B4k, o6K, 10 5303

http://www.modicon.com/techpubs/dcon7.html (27 of 36) [1/11/2000 10:41:04 PM]

Examples of a query and response follow. An example of arequest to read two groups of
references from slave device 17 is shown. Group 1 consists of two registers from file 4, starting
at register 2 (address 0001). Group 2 consists of two registers from file 3, starting at register 10
(address 0009).

Field Hame Example (Hax)
Slave Address 11
Function 14
Eyte Count QOE
=uh-Reg 1, Reference Type]3]
=uh-Reg 1, File Mumber Hi]|
=uh-Reg 1, File Mumber Lo 04
=uh-Reg 1, Staring Addr Hi]|
=uh-Reg 1, Staring Addr Lo o1
=uh-Reg 1, Begister Count Hi]|
=uh-Reg 1, Begister Count Lo oz
=uh-Reyg 2, Reference Type]3]
=uh-Reg 2, File Mumber Hi]|
=uh-Reg 2, File Mumber Lo]
=uh-Reg 2, Staring Addr Hi]|
=uh-Reg 2, Staring Addr Lo o9
=uh-Reqg 2, Begister Count Hi]|
=uh-Reg 2, Register Count Lo02 oz
Errar Check (LRC or CRC —

Response

The normal response is a series of sub-responses, one for each sub-request. The byte count field
Is the total combined count of bytesin all sub-responses. In addition, each sub-response
contains afield that shows its own byte count.

Field Hame Example {Hex)
Slave Address 11
Function 14
Byte Count (I
=ub-Res 1, Byte Count 05
=ub-Req 1, Reference Type 06

http://www.modicon.com/techpubs/dcon7.html (28 of 36) [1/11/2000 10:41:04 PM]

=ub-Bes 1, Register Data Hi oo
=ub-Bes 1, Register Data Lo FE
=ub-Bes 1, Register Data Hi oo
=ub-Bes 1, Register Data Lo 20
=ub-Res 2, Byte Count 05
=ub-Res 2, Reference Type 06
=ub-Res 2, Register Data Hi 33
=ub-Res 2, Register Data Lo D
=ub-Res 2, Register Data Hi oo
=ub-Res 2, Register Data Lo 40
Emor Check (LRZ or CRC -

2.2.14 21 (15 Hex) Write General Reference

Writes the contents of registers in Extended Memory file (6x) references. Broadcast is not
supported.

The function can write multiple groups of references. The groups can be separate
(noncontiguous), but the references within each group must be sequential.

Query

The query contains the standard M odbus slave address, function code, byte count, and error
check fields. Therest of the query specifies the group or groups of references to be written, and
the data to be written into them. Each group is defined in a separate sub-request field which
contains seven bytes plus the data:

V The reference type-one byte (must be specified as 6)

V The Extended Memory file number-two bytes (1 ... 10, 0001 ... 000A hex)
V The starting register address within the file-two bytes

V The quantity of registersto be written-two bytes

V The datato be written-two bytes/register

The quantity of registersto be written, combined with all other fieldsin the query, must not
exceed the allowable length of Modbus messages-256 bytes.

The available quantity of Extended Memory files depends upon the installed size of Extended
Memory in the slave controller. Each file except the last one contains 10,000 registers,
addressed as 0000 ... 270F hexadecimal (0000 - ... 9999 decimal).

For controllers other than the 984-785 with Extended Registers, the last (highest) register in the
last fileis:

http://www.modicon.com/techpubs/dcon7.html (29 of 36) [1/11/2000 10:41:04 PM]

Extended Memory Size Last File Last Register (Decimal)
16K 2 B353
32K 4 2767
Gk v £534
S5k 10 303

For the 984-785 with Extended Registers, the last (highest) register in the last fileisshownin
the two tables below.

Usear State Extended Last Last Reqg
98&4-r 83 Logic RAM HMem Size Fila (Decimal)
with ASM785-032 | 22K 2k 0 0 0
Memory Carridge 16K B4k 72K 5 T7aT
with ASM7T85-048 4z, 2k 2ak; 3 45 7E
Memory Carridge 2K B4k aEk, 10 e

Examples of a query and response follow. An example of arequest to write one group of
references into slave device 17 is shown. The group consists of three registersin file 4, starting
at register 8 (address 0007).

Field Hame Example (Hax)
Slave Address 11
Function 15
Eyte Count]]
=uh-Reg 1, Reference Type]3]
=uh-Reg 1, File Mumber Hi]|
=uh-Reg 1, File Mumber Lo 04
=uh-Reg 1, Staring Addr Hi]|
=uh-Reg 1, Staring Addr Lo or
=uh-Res 1, Register Count Hi]|
=uh-Res 1, Register Count Lo]
=uh-Req 1, Register Dat Hi]3]
=uh-Req 1, Register Dat@ Lo AF
=uh-Res 1, Register Data Hi 04
=uh-Res 1, Register Data Lo EE
=uh-Res 1, Register Data Hi 10
=uh-Res 1, Register Data Lo]]
Errar Check (LRC or CRC —

Response

http://www.modicon.com/techpubs/dcon7.html (30 of 36) [1/11/2000 10:41:04 PM]

The normal response is an echo of the query.

Field Hame Example {Hex)
Slave Address 11
Function 15
Byte Count oo
=ub-Req 1, Reference Type 06
=ub-Beq 1, File Mumber Hi oo
=ub-Beq 1, File Mumber Lo 04
=ub-Req 1, Startng &ddr Hi oo
=ub-Beq 1, Starting &ddr Lo oy
=ub-Bes 1, Begister Count Hi oo
=ub-Bes 1, Register Count Lo 03
=ub-Beq 1, Begister Data Hi 06
=ub-Beq 1, Begister Data Lo aF
=ub-Bes 1, Register Data Hi 04
=ub-Bes 1, Register Data Lo BE
=ub-Bes 1, Register Data Hi 10
=ub-Bes 1, Register Data Lo oo
Emor Check (LRZ or CRC -

2.2.1522 (16 Hex) Mask Write 4x Register

Modifies the contents of a specified 4x register using a combination of an AND mask, an OR
mask, and the register's current contents. The function can be used to set or clear individual bits
in the register. Broadcast is not supported.

=
Note: Thisfunction is supported in the 984-785 controller only.

Query

The query specifies the 4x reference to be written, the data to be used as the AND mask, and the
datato be used as the OR mask.

The function's algorithm is:
Result = (Current Contents AND And_Mask) OR (Or_Mask AND And_Mask)

For example,

http://www.modicon.com/techpubs/dcon7.html (31 of 36) [1/11/2000 10:41:04 PM]

Hex Binary
curent Contents 12 Qoo aa70
And_Mask F2 1111 o010
or_Mask 25 o0 0101

hd_hlas ac Qooa 1101
Fesult 17 Qo0 0111

=

Note: If the Or_Mask value is zero, the result is simply the logical ANDing of the current
contents and And_Mask. If the And_Mask valueis zero, the result is equal to the Or_Mask
value.

=

Note: The contents of the register can be read with the Read Holding Registers function
(function code 03). They could, however, be changed subsequently as the controller scans its
user logic program.

Here is an example of a Mask Write to register 5 in slave device 17, using the above mask
values:

Field Mame Example (Hex)
Slave Address 11
Function 15
Reference Address Hi oo
Reference Address Lo 04
And_Mask Hi an
And_Mask Lo Fa
or_Mask Hi an
Cr_Mask Lo 25
Errar Check (LRC or CRC —_

Response

The normal response is an echo of the query. The response is returned after the register has been
written.

http://www.modicon.com/techpubs/dcon7.html (32 of 36) [1/11/2000 10:41:04 PM]

Field Name

Example {Hex)

Slave Address 11
Function 16
Reference Address Hi oo
Reference Address Lo 04
And_Mask Hi]H]
and_Mask Lo F2
Or_Mask Hi oo
Or_Mask Lo 25

Emor Check (LRZ or CRC

2.2.16 23 (17 Hex) Read / Write 4x Registers

Performs a combination of one read and one write operation in a single Modbus transaction.
The function can write new contents to a group of 4x registers, and then return the contents of
another group of 4x registers. Broadcast is not supported.

=
Note: Thisfunction is supported in the 984-785 controller only.

Query

The query specifies the starting address and quantity of registers of the group to be read. It aso
specifies the starting address, quantity of registers, and data for the group to be written. The
byte count field specifies the quantity of bytesto follow in the write datafield.

Hereis an example of aquery to read six registers starting at register 5, and to write three
registers starting at register 16, in slave device 17:

Field Name

Example {Hex)

Slave Address

11

Function

17

Fead Feference Address Hi

a0

Fead Feference Address Lo

04

Zuantty o Bead Hi
Zuantty o Bead Lo

a0
06

Wite Feference Address Hi

a0

Wite Feference Address Lo

aF

Guantty to Write Hi

a0

Guantty to Write Lo

03

Byte Count

06

http://www.modicon.com/techpubs/dcon7.html (33 of 36) [1/11/2000 10:41:04 PM]

Write Data 1 Hi oo
Write Data 1 Lo FF
Write Data 2 Hi oo
Write Data 2 Lo FF
Write Data 3 Hi oo
Write Data 3 Lo FF
Emor Check (LRZ or CRC —_

Response

The normal response contains the data from the group of registers that were read. The byte
count field specifies the quantity of bytesto follow in the read datafield.

Here is an example of aresponse to the query:

Field Mame Example (Hex})
Slave Address 11
Function 17
Byte Count o
Read Datw 1 Hi an
Read Data 1 Lo FE
Read Data 2 Hi st
Read Data 2 Lo D
Read Data 3 Hi oo
Read Data 3 Lo 01
Read Dat 4 Hi an
Read Data 4 Lo 03
Read Data S Hi oo
Read Data & Lo D
Read Data 6 Hi oo
Read Data 6 Lo FF
Emor Check (LRZ or CRC —_

2.2.17 24 (18 Hex) Read FIFO Queue

Reads the contents of afirst-in first-out (FIFO) queue of 4x registers. The function returns a
count of the registers in the queue, followed by the queued data. Up to 32 registers can be
read-the count, plus up to 31 queued data registers. The queue count register is returned first,
followed by the queued data registers.

The function reads the queue contents, but does not clear them. Broadcast is not supported.

http://www.modicon.com/techpubs/dcon7.html (34 of 36) [1/11/2000 10:41:04 PM]

=
Note: Thisfunction is supported in the 984-785 controller only.

Query

The query specifies the starting 4x reference to be read from the FIFO queue. Thisisthe address
of the pointer register used with the controller's FIN and FOUT function blocks. It contains the
count of registers currently contained in the queue. The FIFO data registers follow this address
sequentially.

An example of a Read FIFO Queue query to slave device 17 is shown below. The query isto
read the queue starting at the pointer register 41247 (04DE hex).

Field Hame Example {Hex)
Slave Address 11
Function 13
FIFO Pointer Address Hi 04
FIFO Pointer Address Lo DE
Emor Check (LRC or CRC) -

Response

In anormal response, the byte count shows the quantity of bytesto follow, including the queue
count bytes and data register bytes (but not including the error check field).

The queue count is the quantity of data registersin the queue (not including the count register).

If the queue count exceeds 31, an exception response is returned with an error code of 03
(Illegal DataValue).

Here is an example of anormal response to the previous query:

Field Name Example {Hex)
Slave Address 11
Function 12
Byte Count Hi Qo
Byte Count Lo as
FIF2 Count Hi a0
FIFQr Count Lo a3
FIFD Data Reg 1Hi 01
FIFQ Data Heg 1 Lo BS
FIFD Data Regy 2 Hi 12
FIFO Data Heg 2 Lo a4
FIFD Data Regy 3 Hi 13
FIFQ Data Heg 3 Lo a2
Emor Check (LRZ or CRC —_

http://www.modicon.com/techpubs/dcon7.html (35 of 36) [1/11/2000 10:41:04 PM]

In this example, the FIFO pointer register (41247 in the query) is returned with a queue count of
3. The three data registers follow the queue count. These are:

V 41248 (contents 440 decimal, 01B8 hex)
V 41249 (contents 4740, 1284 hex)
V 41250 (contents 4898, 1322 hex)

http://www.modicon.com/techpubs/dcon7.html (36 of 36) [1/11/2000 10:41:04 PM]

Chapter 3
Diagnostic Subfunctions

\% D Modbus Function 08-Diagnostics

V D Diagnostic Codes Supported by Controllers
V D Return Query Data

\ D Restart Communications Option

V DReturn Diagnostic Register

\% DChange ASCII Input Delimiter

V D Force Listen Only Mode

V DCIear Counters and Diagnostic Register
\ D Return Bus Message Count

\Y DReturn Bus Communication Error Count
V D Return Bus Exception Error Count

V D Return Slave Message Count

V D Return Slave No Response Count

\% D Return Slave NAK Count

V D Return Slave Busy Count

V D Return Bus Character Overrun Count

V D Return 1OP Overrun Count (884)

V DCIear Overrun Counter and Flag (884)

http://www.modicon.com/techpubs/diag7.html (1 of 16) [1/11/2000 10:43:10 PM]

V DGet / Clear Modbus Plus Statistics

V D Modbus Plus Network Statistics
3.1 Function 08-Diagnostics

Modbus function 08 provides a series of tests for checking the communication system between
the master and slave, or for checking various internal error conditions within the slave.
Broadcast is not supported.

The function uses a two-byte subfunction code field in the query to define the type of test to be
performed. The slave echoes both the function code and subfunction code in anormal response.

Most of the diagnostic queries use atwo-byte data field to send diagnostic data or control
information to the slave. Some of the diagnostics cause data to be returned from the slave in the
datafield of anormal response.

Diagnostic Effects on the Slave

In general, issuing a diagnostic function to a slave device does not affect the running of the user
program in the slave. User logic, like discretes and registers, is not accessed by the diagnostics.
Certain functions can optionally reset error countersin the slave.

A dlave device can, however, be forced into "Listen Only Mode' in which it will monitor the
messages on the communi cations system but not respond to them. This can affect the outcome
of your application program it it depends upon any further exchange of data with the slave
device. Generadly, the mode is forced to remove a malfunctioning slave device from the
communications system.

How ThisInformation is Organized in Your Guide

An example diagnostics query and response are shown on the opposite page. These show the
location of the function code, subfunction code, and data field within the messages.

A list of subfunction codes supported by the controllers is shown on the pages after the example
response. Each subfunction code is then listed with an example of the data field contents that
would apply for that diagnostic.

Query

Here is an example of arequest to slave device 17 to Return Query Data. Thisuses a
subfunction code of zero (00 00 hex in the two-byte field). The data to be returned is sent in the
two-byte datafield (A5 37 hex).

http://www.modicon.com/techpubs/diag7.html (2 of 16) [1/11/2000 10:43:10 PM]

Field Name

Example Hex)

Slave Address

11

Function

03

Subfuncton Hi

an

Subfuncton Lo

an

Data Hi
Cata Lo

A5
ar

Emor Check (LRZ or CRC

Response

The normal response to the Return Query Data request is to loopback the same data. The
function code and subfunction code are also echoed.

Field Name

Example {Hex)

=lave Address

11

Function

05

=ubfunction Hi

ao

=ubfunction Lo

ao

Cata Hi
Dat Lo

S
37

Emor Check (LRC or CRC)

The datafields in responses to other kinds of queries could contain error counts or other
information requested by the subfunction code.

3.2 Diagnostic Codes Supported by Controllers

Subfunction codes are listed in decimal; Y indicates that the subfunction is supported, and N
indicates that it is not supported.

Code | Hame 384 484 384 &84 k4 984

]| Fetm Query Data

o1 Festart Comm Option

oz Fetm Diagnostic
Fegister

] Change ASCIH Input ¥ ki Y M M Y
Delimiter

04 Force Listen Only Mode ¥ ki Y ¥ ki Y

http://www.modicon.com/techpubs/diag7.html (3 of 16) [1/11/2000 10:43:10 PM]

o5 .09 Feserved

10 Clear s and i i 1 M M T
Diagnostc Register

11 Retum Bus Message) Y Y M] Y
Count

12 Retum Bus Comm,) Y Y M] Y
Erwor Count

13 Retum Bus Exception i Y Y M M Y
Erwor Count

14 Retum Slave Message i Y Y M M M
Count

15 Fetum Slave Mo) Y Y M] M
Response Count

16 Fetum Slave MAK i i i M M W
Count

17 Betum Slave Busy i Y Y M M Y
Count

13 Fetum Bus Charmcter) Y Y M] Y
e Count

19 Retum Overnun Emor M M M)] M
Count

20 Clear Owerun Counter M M M)] M
and Flay

21 Giet! Clear Modhus Plus M M M M] Y
Simtistics

22 up Reserved

i 1) =Clears Counters only,

3.2.1 00 Return Query Data

The data passed in the query datafield is to be returned (looped back) in the response. The
entire response message should be identical to the query.

Subfunction | Data Field {Query) | Data Field {Response)
00 a0 | finy | Echo Query Dak

3.2.2 01 Restart Communications Option

The dlave's peripheral port isto beinitialized and restarted, and all of its communications event
counters are to be cleared. If the port is currently in Listen Only Mode, no response is returned.
This function is the only one that brings the port out of Listen Only Mode. If the port is not
currently in Listen Only Mode, a normal response is returned. This occurs before the restart is
executed.

When the slave receives the query, it attempts a restart and executes its power-up confidence
tests. Successful completion of the tests will bring the port online.

http://www.modicon.com/techpubs/diag7.html (4 of 16) [1/11/2000 10:43:10 PM]

A query datafield contents of FF 00 hex causes the port's Communications Event Log to be
cleared also. Contents of 00 00 leave thelog asit was prior to the restart.

Subfunction Data Field {Query) Data Field (Response)
oo o1 o0 oo Echo Query Data
oo o1 FF 00 Echo Query Data

3.2.3 02 Return Diagnostic Register
The contents of the slave's 16-bit diagnostic register are returned in the response.

Subfunction | Data Field (Query) | Data Field {fesponse)
0o 0z | 00 a0 | Diaghostc Register Contents

3.2.4 How the Register Data is Organized

The assignment of diagnostic register bits for Modicon controllersis listed below. In each
register, bit 15 is the high-order bit. The description is TRUE when the corresponding bit is set
tologic 1.

1841384 Diagnostic Hegister

Bit Dascrption

0 Cantinue on Erar

1 Fun Light Failed

2 T-Bus Test Failed

3 Asynchronous Bus Test Failed

4 Force Listen Only Mode

5 Mot Used

G Mot Used

i RO Chip O Test Failed

& Cantinuous BOM Checksum Test in Execution

9 RO Chip 1 Test Failed

10 ROM Chip 2 Test Failed

11 ROM Chip 3 Test Failed

12 Rak Chip S000-53FF Test Failed

13 Rak Chip B000-67FF Test Failed, Even Addresses
14 Rak Chip BO00-67FF Test Failed, Odd Addresses
15 Timer Chip Test Failed

http://www.modicon.com/techpubs/diag7.html (5 of 16) [1/11/2000 10:43:10 PM]

484 Diagnostic Register

Bit Description

1] iZantnue on Emor

1 CPU Test or Bun Light Failed

2 Parallel Port Test Failed

3 Asynchronous Bus Test Failed

4 Tirmer O Test Failed

4 Tirmer 1 Test Failed

G Timer 2 Test Failed

i ROM Chip 0000-07FF Test Failed
g Contnuous ROM Checksum Test in Execution
9 ROM Chip 0200-0FFF Test Failed
10 ROM Chip 1000-17FF Test Failed
11 ROM Chip 1800-1FFF Test Failed
12 Rak Chip 4000-40FF Test Failed
13 Rak Chip 4100-41FF Test Failed
14 Rak Chip 4200-42FF Test Failed
15 Rak Chip 4300-43FF Test Failed

384184 Diagnostic Hegister

Bit Dascrption

0 Hlegal Configuration

1 Backup Checksum Emor in High-speed RAh

2 Logic Checksum Emar

3 Invalid Mode Type

4 Invalid Trafic Caop Type

& CPUMSalve Diagnostc Failed

G Feal Time Clock Failed

v Watchdog Timer Failed—3>=can Time exceeded 250 ms

a Mo End of Logic Mode detected, orquantity ofend ofsegment
veards (DOICY daes not match quantity of segments configured

3 State RAl Test Failed

10 Sart of Metywork (SOMN) did not hegin neteork

11 Bad Order of Solve Table

12 llegal Petpheral Intervention

13 DIM AWARENESS Flag

14 Mot Used

15 Peripheral Port Stop Executed, notan emor

http://www.modicon.com/techpubs/diag7.html (6 of 16) [1/11/2000 10:43:10 PM]

§84 Diagnostic Register

Bit Description

Modbus [OP Overmun Emors Flayg
Modbus Opton Ovemun Emors Flayg
Modhus 1OP Failed

Modlbus Opton Failed

Curhus 1OP Failed

Remote 1O Failed

Main CPU Failed

Tahle Rak Checksum Failed

=can Task exceeded ity tme limit—too much user logic
w15 Mot lsed

W 0| = @A W R =] D

3.2.503 Change ASCI I Input Delimiter

The character CHAR passed in the query data field becomes the end of message delimiter for
future messages (replacing the default LF character). This function is useful in cases where a
Line Feed is not wanted at the end of ASCII messages.

Subfunction | Data Field (Query) | Data Field {fesponse)
00 03 | CHAR 00 | Echo Query Dat

3.2.6 04 ForceListen Only Mode

Forces the addressed slave to its Listen Only Mode for Modbus communications. Thisisolates
it from the other devices on the network, allowing them to continue communicating without
interruption from the addressed slave. No response is returned.

When the slave entersiits Listen Only Mode, all active communication controls are turned off.
The Ready watchdog timer is allowed to expire, locking the controls off. While in this mode,
any Modbus messages addressed to the slave or broadcast are monitored, but no actions will be
taken and no responses will be sent.

The only function that will be processed after the mode is entered will be the Restart
Communications Option function (function code 8, subfunction 1).

Subfunction | Data Field (Query) | Data Field {fesponse)
00 04 | 00 a0 | Mo Fesponse Retumed

3.2.7 10 (OA Hex) Clear Countersand Diagnostic Register

For controllers other than the 584 or 984, clears all counters and the diagnostic register. For the
584 or 984, clears the counters only. Counters are also cleared upon power-up.

http://www.modicon.com/techpubs/diag7.html (7 of 16) [1/11/2000 10:43:10 PM]

Subfunction | Data Field (Query) | Data Field {fesponse)
00 DA | 00 00 | Echo Query Dat

3.2.8 11 (0B Hex) Return Bus M essage Count

The response data field returns the quantity of messages that the slave has detected on the
communications system since its last restart, clear counters operation, or power-up.

Subfunction | Data Field (Query) | Data Field {fesponse)
00 0B | 00 a0 | Total Message Count

3.2.9 12 (0OC Hex) Return Bus Communication Error Count

The response data field returns the quantity of CRC errors encountered by the slave since its last
restart, clear counters operation, or power-up.

Subfunction | Data Field {Query) | Data Field {Response)
00 0 | 00 a0 | CRC Emor Count

3.2.10 13 (OD Hex) Return Bus Exception Error Count

The response data field returns the quantity of Modbus exception responses returned by the
dave sinceits last restart, clear counters operation, or power-up. For a description of exception
responses, see page .

Subfunction | Data Field (Query) | Data Field {fesponse)
00 0D | 00 a0 | Exception Emor Count

3.2.11 14 (OE Hex) Return Slave M essage Count

The response data field returns the quantity of messages addressed to the slave, or broadcast,
that the slave has processed since its last restart, clear counters operation, or power-up.

Subfunction | Data Field {Query) | Data Field {Response)
00 0E | 00 oo | Slave Message Count

3.2.12 15 (OF Hex) Return Slave No Response Count

The response data field returns the quantity of messages addressed to the slave for which it
returned no response (neither anormal response nor an exception response), since its last
restart, clear counters operation, or power-up.

http://www.modicon.com/techpubs/diag7.html (8 of 16) [1/11/2000 10:43:10 PM]

Subfunction | Data Field (Query) | Data Field {fesponse)
00 0OF | o0 oo | Slave Mo Repsonse Count

3.2.13 16 (10 Hex) Return Slave NAK Count

The response data field returns the quantity of messages addressed to the slave for which it
returned a Negative Acknowledge (NAK) exception response, since its last restart, clear
counters operation, or power-up. For a description of exception responses, see page .

Subfunction | Data Field (Query) | Data Field {fesponse)
00 10 | 00 00 | Slave MAK Count

3.2.14 17 (11 Hex) Return Slave Busy Count

The response data field returns the quantity of messages addressed to the slave for which it
returned a Slave Device Busy exception response, sinceits last restart, clear counters operation,
or power-up. For a description of exception responses, see page .

Subfunction | Data Field {Query) | Data Field {Response)
00 11 | 00 a0 | Slave Device Busy Count

3.2.15 18 (12 Hex) Return Bus Character Overrun Count

The response data field returns the quantity of messages addressed to the Slave that it could not
handle due to a character overrun condition, sinceits last restart, clear counters operation, or
power-up. A character overrun is caused by data characters arriving at the port faster than they
can be stored, or by the loss of a character due to a hardware malfunction.

Subfunction | Data Field {Query) | Data Field {Response)
oo 12 | o0 oo | =lave Charcter Overrun Count

3.2.16 19 (13 Hex) Return |OP Overrun Count (884)

The response data field returns the quantity of messages addressed to the Slave that it could not
handle due to an 884 IOP overrun condition, since its last restart, clear counters operation, or
power-up. An IOP overrun is caused by data characters arriving at the port faster than they can
be stored, or by the loss of a character due to a hardware malfunction.

Subfunction | Data Field {Query) | Data Field {Response)
00 13 | 00 a0 | Slave 1OF Ovemun Count
=

http://www.modicon.com/techpubs/diag7.html (9 of 16) [1/11/2000 10:43:10 PM]

Note: Thisfunction is specific to the 884.
3.2.17 20 (14 Hex) Clear Overrun Counter and Flag (884)

Clears the 884 overrun error counter and resets the error flag. The current state of theflag is
found in bit O of the 884 diagnostic register (see subfunction 02).

Subfunction | Data Field {Query) | Data Field {Response)
00 14 | 00 a0 | Echo Guery Dak

=
Note: Thisfunction is specific to the 884.
3.2.18 21 (15 Hex) Get / Clear M odbus Plus Statistics

Returns a series of 54 16-bit words (108 bytes) in the data field of the response (this function
differs from the usual two-byte length of the datafield). The data contains the statistics for the
Modbus Plus peer processor in the slave device.

In addition to the Function code (08) and Subfunction code (00 15 hex) in the query, atwo-byte
Operation field is used to specify either a Get Statistics or a Clear Statistics operation. The two
operations are exclusive-the Get operation cannot clear the statistics, and the Clear operation
cannot return statistics prior to clearing them. Statistics are also cleared on power-up of the
slave device.

The operation field immediately follows the subfunction field in the query:
V -- A value of 00 03 specifies the Get Statistics operation.

V -- A value of 00 04 specifiesthe Clear Statistics operation.

Query

Thisisthe field sequence in the query:

Function | Subfunction Operation
03 0015 0003 (Get S@atistics)
0004 {(Zlear Satistcs)

Get Statistics Response
Thisisthe field sequence in the normal response to a Get Statistics query:

Function | Subfunction | Operation | Byte Count | Data
03 | 00 15 | 00 03 | 00 B | Words 00 .. 53

http://www.modicon.com/techpubs/diag7.html (10 of 16) [1/11/2000 10:43:10 PM]

Clear Statistics Response
The normal response to a Clear Statistics query is an echo of the query:

Function | Subfunction | Operation

03 | 00 15 | 00 04

3.2.19 M odbus Plus Networ k Statistics

Word Meaning

)] Bit Mode twpe D
0 Unknownh node type
1 FLZ node
2 Modbus bridge node
3 Host computer node
4 Bridge Plus node
5 FPeer MO node

01 Bit
0..11 |Softevare verzsion number in hex o read, stip hits 12-15 ftom word)
12 Device supports dual cable neteork
13 Device supports Peer Cop communication
14 Device supports identity reporting
15 Defines Word 15 emor counters (see "Word 15

Most significant hit defines use of errar Ccounters in YWord 15, Least
gignificant half afupper byte, plus lower byte, contain softeare version,
B - (11211 M| 9| |Fle|[a]4]|3]z]1]0
L N N I N O O A N
— Sofbware wersion nurmber (in hey)
Word 15 error counters (s ee Word 15
02 Metwork address for this station
03 Bit MAC state vanahle:

0 Foveer up state
1 Maonitar offine state
2 Duplicate offine state
3 ldle state
4 Use token state
& Work response state
G Pass token state

http://www.modicon.com/techpubs/diag7.html (11 of 16) [1/11/2000 10:43:10 PM]

=olicit esponge siate
Check pass state
Claim token state
10 Claim response stite
04 Peer status (LED code) provides st@atis of this unit relatve o the
neteeark:
0 Monitoting link operaton only—passive station
32 Maomnal link operaton
G54 Mever getling token—sees twkens, receives none
8] =ole sttion—never sees tokens
128 Duplicate ston—sees other stations with same address
05 Token pass counter, increments each tme this siton gets the token
1] Taken rotation tme in ms
o7 B yte
LD Data master failed during token ovenership bit map
HI Program master failed during token ovenership bit map

=

Note: Word 07 bitmaps are used internally by the peer processor to determine which paths have
aready had a command sent to them during the current token ownership. This limits the number
of commands per path to one during a single token ownership.

Word B yte Meaning
0a Lo Dat@a master wwken avwner vwork-to-do tahle
HI Frogram master woken owner vwork-to-do &hle
03 Lo Dat slave token ovner work-to-do table
HI Program slave token owner work-to-do &hle
10 LD Data master response how availahle o read)
HI Dat slave command
11 Lo Program master response oy available to read)
HI Program slave command
12 Lo Program master connect st@atus @mble—master paths in use
HI Program slave automatc logout request mhle—slaves to log out

=

Note: Words 08 ... 12 are token owner work tables. They are bitmaps representing work that
needs to be done by the node the next time it gets the token. Each byte is a bitmap
corresponding to work requested of each of the eight paths of the indicated type.

http://www.modicon.com/techpubs/diag7.html (12 of 16) [1/11/2000 10:43:10 PM]

Word B yte Meaning
13 L Pretransmit defenal emor counter
HI Receive huffer DMA overmun emor counter
14 Lo Repeated command received counter
HI Frame size ermor counter
16 [fWord 1hit 15is sofsef, Word 15 has the following meaning:
L Receiver collision-ahort emar counter
HI Receiver alignment emor counter
Mote [f'Word 1hit 15 is sef, Word 15 has the follovwing meaning:
Lo Cable & framing emor
HI Cable B framing emor
16 L Receiver CHC emor counter
HI Bad packetlength emor counter
17 L Bad link-address ermor counter
HI Transmit huffer DMA-undemin emor caunter
13 Lo Bad intemal packet length emor counter
HI Bad MAC function code emor counter
19 Lo Communication rety counter
HI Cammunication failed eror counter
20 Lo Good receive packet success counter gnorements nomallyd
HI Mo response received emor counter gnorements nomally 1., 10
tmes's), Each st@ton occasionally allows anev sttion o join the
netevork, which increments this counter, Ifa st@aftion leaves, the re-
maining s@tons confinue t0 increment their emor counters untl the
station is removed from each stton® map.
21 Lo Exception response received ermor counter—LLC layver emor, illegal
packet emor
HI Unespected path emor counter—dat packet containg ilegal path
field
22 Lo Unespected response counter—packet sent o wrong destnaton
HI Forgotten transaction erar counter—command was iniiated but
hever completed, possibly because the response packet had the
vrong path, sequence numbers, or hode number,

II_I_'="Fo_:[e: Words 13 ... 22 contain pairs of 8-bit counters that pertain to certain types of error
conditions as well as to successful transactions. Under normal operating conditions, the only
bytes that change are word 20 LO and HI. Word 14 HI could also increment because of an
MSTR or similar programming error in the application. If any other bytes increments, a possible
problem exists on the network-e.g., in asingle station or wiring connection.

http://www.modicon.com/techpubs/diag7.html (13 of 16) [1/11/2000 10:43:11 PM]

Word B yte Meaning

23 Lo Actve staton &ble bit map, nodes & ... 1
HI Actve staton wble bit map, nodes 16 .,.9

24 Lo Actve staton &ble bit map, nodes 24 .., 17
HI Actve staton &ble bit map, nodes 32 .., 25

25 Lo Actve staton &ble bit map, nodes 40 .., 33
HI Actve staton &ble bit map, nodes 43 .., 41

26 Lo Actve staton &ble bit map, nodes 56 .., 49
HI Actve staton &ble bit map, nodes 64 .., 57

=
Note: Words 23 ... 26 contain the active station bitmaps. An active station is any one that has

sent packets of data over the network.

Word B yte Meaning

27 Lo Token station whle bitmap, nodes & ... 1
HI Token staton &hle bitmap, nodes 16 ..9

28 Lo Token station whle bitmap, nodes 24 .., 17
HI Token station whle bitmap, nodes 32 ... 25

29 Lo Token station whle bitmap, nodes 40 .., 33
HI Token staton whle bitmap, nodes 43 ... 41

30 Lo Token station whle bitmap, nodes 56 .., 49
HI Token station whle bitmap, nodes 64 .., 57

=
Note: Words 27 ... 30 contain the token station table bitmaps. A token station is any one that
has token-passing capabilities.

Word B yte Meaning
a1 Lo Global data present @ble bitmap, nodes 5 ... 1
HI Global data present wble bitmap, nodes 16 .9
a2 Lo Global data present wble bitmap, nodes 24 .., 17
HI Global data present wble bitmap, nodes 32 .., 25
a3 Lo Global data present twble bitmap, nodes 40 .., 33
HI Global data present ble bitmap, nodes 45 .., 41
) Lo Global data present @hle map, nodes 56 ... 49
HI Global data present twble bitmap, nodes 64 .., &7

http://www.modicon.com/techpubs/diag7.html (14 of 16) [1/11/2000 10:43:11 PM]

II_I_'_‘:or:[e: Words 31 ... 34 contain the global data present table bitmaps. Each time a station passes a
token, it also passes the global data, even if there are zero bytes of global data. When one
station sees another pass the token with global data, it setsitsbit in itstable for that other
station. The bit remains set until the station reads the global data from that other station, after
which the bit is cleared. A second read of global data indicates that no global datais present.

=

Note: In screen 2 of the MBPSTAT program, the number of global data words present is
indicated under the station number. If thisfield isfilled with spaces, then MBPSTAT has
requested the global data from a second time before the other station passed the token.

Word B yte Meaning
35 Lo Receive hufferin use hit map, buffer 3 ... 1
HI Receive huffer in use hit map, buffer 16 ... 9
36 Lo Receive buffer in use hit map, buffer 24 .., 17
HI Receive huffer in use hit map, buffer 32 ... 25
a7 Lo Receive buffer in use hit map, buffer 40 .., 33
HI Staton management command processed initaton counter

=
Note: The LO bytes of words 35 ... 37 indicate the use of the internal receive buffers within the
peer processor.

Word B yte Meaning
ag Lo Data master output path 1 command initation counter
HI Data master output path 2 command initation counter
a9 Lo Data master output path 3 command initation counter
HI Data master output path 4 command initation counter
40 Lo Data master output path & command initation counter
HI Data master output path 6 command initation counter
41 Lo Data master output path ¥ command initation counter
HI Data master output path S command initation counter
q42 Lo Data slave input path 41 command processed counter
HI Data slave input path 42 command processed counter
43 Lo Data slave input path 43 command processed counter
HI Data slave input path 44 command processed counter
44 Lo Data slave input path 45 command processed counter
HI Data slave input path 46 command processed counter
45 Lo Data slave input path 47 command processed counter
HI Data slave input path 43 command processed counter
456 Lo Program master output path 51 command iniiaton counter

http://www.modicon.com/techpubs/diag7.html (15 of 16) [1/11/2000 10:43:11 PM]

HI Program master output path 32 command iniiaton counter
47 Lo Program master output path 33 command iniiaton counter
HI Program master output path 34 command iniiaton counter
43 Lo Program master command inifaton counter
HI Program master output path 36 command iniiaton counter
49 Lo Program master output path 37 command iniiaton counter
HI Program master output path 33 command iniaton counter
0 Lo Program slave input path 1 command processed counter
HI Program slave input path C2 command processed counter
41 Lo Program slave input path ©3 command processed counter
HI Program slave input path ©4 command processed counter
52 Lo Program slave input path ©5 command processed counter
HI Program slave input path C6 command processed counter
53 Lo Program slave input path CF command processed counter
HI Program slave input path ©3 command processed counter

http://www.modicon.com/techpubs/diag7.html (16 of 16) [1/11/2000 10:43:11 PM]

Chapter 4
Exception Responses

\% DExcepti on Responses

\Y [] Exception Codes
4.1 Exception Responses

Except for broadcast messages, when a master device sends a query to a slave device it expects
anormal response. One of four possible events can occur from the master's query:

V If the slave device receives the query without a communication error, and can handle the
guery normally, it returns anormal response.

V If the slave does not receive the query due to a communication error, no response is returned.
The master program will eventually process a timeout condition for the query.

V If the dlave receives the query, but detects a communication error (parity, LRC, or CRC), no
response is returned. The master program will eventually process a timeout condition for the

query.

V If the slave receives the query without a communication error, but cannot handleit (for
example, if the request is to read a nonexistent coil or register), the slave will return an
exception response informing the master of the nature of the error.

The exception response message has two fields that differentiate it from a normal response:
Function Code Field

In anormal response, the slave echoes the function code of the original query in the function
code field of the response. All function codes have a most significant bit (MSB) of O (their
values are al below 80 hexadecimal). In an exception response, the slave setsthe MSB of the
function code to 1. This makes the function code value in an exception response exactly 80
hexadecimal higher than the value would be for anormal response.

With the function code's MSB set, the master's application program can recognize the exception
response and can examine the datafield for the exception code.

Data Field

In anormal response, the slave may return data or statistics in the datafield (any information
that was requested in the query). In an exception response, the slave returns an exception code
in the data field. This defines the slave condition that caused the exception. Here is an example
of amaster query and slave exception response. The field examples are shown in hexadecimal.

http://www.modicon.com/techpubs/excpt7.html (1 of 3) [1/11/2000 10:43:26 PM]

Query

B yte Contents Example
1 Slave Address 0A

2 Function 01

3 Starting Address Hi 04

4 Startng Address Lo &1

4 Murmber of Cails Hi oo

G Murmber of Coils Lo 01

i LR 4F
Exception Hesponse

B yta Contents Example
1 Slave Address s

2 Functian g1

3 Exception Code oz

4 LR 73

In this example, the master addresses a query to slave device 10 (OA hex). The function code
(01) isfor aRead Coil Status operation. It requests the status of the coil at address 1245 (04A1

hex).

=
Note: Only one coil isto be read, as specified by the number of coilsfield (0001).

If the coil address is nonexistent in the slave device, the slave will return the exception response
with the exception code shown (02). This specifies an illegal data address for the slave. For
example, if the slave is a 984-385 with 512 coils, this code would be returned.

4.2 Exception Codes

http://www.modicon.com/techpubs/excpt7.html (2 of 3) [1/11/2000 10:43:26 PM]

Code

MName

Meaning

a1

ILLEGAL FLUMNCTION

The functon code received in the querny is notan alloveahle
action for the slave, Ifa Poll Program Complete command
vwas issued, this code indicates thatno program function
preceded it

0z

ILLEGAL DATA ADDRESS

The dat address received in the queny is not an allovable
address for the slave,

03

ILLEGAL DATA VALUE

& value contained in the gquery da@ field is notan allove-
able value for the slave

04

SLAVE DEVICE FAlILURE

An unrecoverable emor occumed while the slave was at
temptng o perform the requested action,

a5

=]

ACKNOW LEDGE

SLAVE DEWICE BUSY

The slave has accepted a request and is processing it but
along duration of ime is required, This response is
returmed to prevent a tmeout emor from occuming in the
master, The master can nextissue a Poll Program
Complete message to determing if processing is
completed,

The slave is processing a long-duration program
command, The master should retransmit the message
later when the slave is free,

ar

MEGATIVE ACKMNOWLEDGE

The slave cannot perform the program functon received in
the query, This code is retumed for an unsuccessiul
programming request using functon code 13 or 14
decimal, The master should request diagnostc or emor
infarmation from the slave,

03

MEMORY PARITY ERROR

The slave attempted to read extended memory, but
detected a party emor in the memorny, The master can rety
the request, but service may be required on the slave
device,

http://www.modicon.com/techpubs/excpt7.html (3 of 3) [1/11/2000 10:43:26 PM]

Chapter 5
Application Notes

V D Maximum Query / Response Parameters

Vv DEsti mating Serial Transaction Timing

V DAppIication Notesfor the 584 and 984A / B / X

5.1 Maximum Query / Response Parameters

The listings show the maximum amount of data that each controller can request or sendin a
master query, or return in aslave response. All function codes and quantities are in decimal.

184/384
Function Description Query Response
01 Read Coil Statis 200 cails g0 cails
nz2 Read Input Status S00 inputs SO0 inputs
03 Read Holding Registers 100 registers 100 registers
04 Read Input Registers 100 registers 100 registers
05 Force Single Cail 1 coil 1 coil
06 Preset Single Register 1 register 1 register
oy Read Exception S@ats Mia g coils
03 Diagnostcs Mia Mg
09 Program 454 Motsupported Motsupported
10 Poll 454 Motsupported Motsupported
11 Fetch Comm Event Caunter MiA MiA
12 Fetch Comm Event Log Mia 0 dati hytes
13 Program Contraller 32 dat bytes 32 dat hytes
14 Poll Contraller Mia 32 dat hytes
15 Force Multiple Coils 300 coils 00 coils
16 Preset Multiple Registers 100 registers 100 registers
17 Report Slave D Mia Mg
15 Program 334/M34 Motsupported Motsupported
19 Reset Comm Link Motsupported Motsupported
20 Read General Reference Motsupported Motsupported
21 Write General Reference Motsupported Motsupported
484

http://www.modicon.com/techpubs/app7.html (1 of 7) [1/11/2000 10:44:32 PM]

These values are for an 8K controller. See the 484 User's Guide for limits of smaller controllers.

Function Description Query Response

01 Fead Coil s 512 cails 512 cails

02 Read Input Status 512 inputs 12 inputs

03 Read Holding Registers 254 registers 254 registers

04 Read Input Registers 32 registers 32 registers

05 Force Zingle Cail 1 coil 1 coil

06 Preset Single Register 1 register 1 register

oy Read Excepton S@ats Mia g coils

s Diagnostcs Mia MiA

09 Program 454 16 dat hytes 16 dat bytes

10 Pall 454 MG 16 data bytes

11 Fetch Comm Event Counter Motsupported Motsupported

12 Fetch Comm Event Log Motsupported Motsupported

13 Program Contraller Motsupported Motsupported

14 Poll Contraller Motsupported Motsupported

15 Force Multiple Coils 200 coils S00 coils

16 Preset Multiple Registers B0 registers B0 registers

17 Report Slave D Mia MiA

18 Program 334/M34 Motsupported Motsupported

19 Reset Comm Link Motsupported Motsupported

20 Read General Reference Motsupported Motsupported

21 Write General Reference Motsupported Motsupported
584

Function DescHption Cluery Response

01 Read Coil Saus 2000 coils 2000 coils

oz Fead Input Statis 2000 inputs 2000 inputs

] Fead Holding Registers 125 registers 125 registers

04 Fead Input Registers 125 registers 125 registers

05 Force Single Coil 1 coil 1 coil

]3] Preset Single Register 1 register 1 register

or Fead Exception S@as MG o coils

(5] Diagnostcs MG M

o9 Program 454 Motsupported Motsupported

10 Foll 454 Motsupported Motsupported

11 Fetch Comm Event Counter M M

http://www.modicon.com/techpubs/app7.html (2 of 7) [1/11/2000 10:44:32 PM]

12 Fetch Comm Event Log Mia 0 dati hytes
13 Program Contraller 33dat bytes 33 dat hytes
14 Poll Contraller Mia 33 dat hytes
15 Force Multiple Coils 300 coils 00 coils

16 Preset Multiple Registers 100 registers 100 registers

17 Report Slave D Mia Mg

15 Program 334/M34 Motsupported Motsupported
19 Reset Comm Link Motsupported Motsupported
20 Read General Reference (1 (T

21 Write General Reference (1 (T

(10 The maximum length of the entire message must not exceed 256 hytes,

884
Function Description Query Response
01 Fead Coil s 2000 coils 2000 cails
02 Read Input Status 2000 inputs 2000 inputs
03 Read Holding Registers 125 registers 126 registers
04 Read Input Registers 125 registers 126 registers
05 Force Zingle Cail 1 coil 1 coil
06 Preset Single Register 1 register 1 register
oy Read Excepton S@ats Mia g coils
s Diagnostcs Mia MiA
09 Program 454 Motsupported Motsupported
10 Poll 434 Motsupported Motsupported
11 Fetch Comm Event Counter Motsupported Motsupported
12 Fetch Comm Event Log Motsupported Motsupported
13 Program Contraller Motsupported Motsupported
14 Poll Contraller Motsupported Motsupported
15 Force Multiple Coils 200 coils S00 coils
16 Preset Multiple Registers 100 registers 100 registers
17 Report Slave D Mia MiA
18 Program S34/ME4 i (1
13 Reset Commm Link MiA Mg
20 Read General Reference Motsupported Motsupported
21 Write General Reference Motsupported Motsupported

(1) The maximum length of the entire message must not exceed 256 hytes,

M84

http://www.modicon.com/techpubs/app7.html (3 of 7) [1/11/2000 10:44:32 PM]

Function Description Query Response
01 Read Coil Statis B4 coils B4 coils

nz2 Read Input Status B4 inputs B4 inputs

03 Read Holding Registers 32 registers registers

04 Read Input Registers 4 registers 4 registers

05 Force Single Cail 1 coil 1 coil

06 Preset Single Register 1 register 1 register

oy Read Exception S@ats Mia g coils

03 Diagnostcs Mia Mg

09 Program 454 Motsupported Motsupported
10 Poll 454 Motsupported Motsupported
11 Fetch Comm Event Counter Motsupported Motsupported
12 Fetch Comm Event Log Motsupported Motsupported
13 Program Contraller Motsupported Motsupported
14 Poll Contraller Motsupported Motsupported
15 Force Multiple Coils G4 coils B4 coils

16 Preset Multiple Registers 32 registers 32 registers
17 Report Slave D Mia Mg

15 Program S34/MS4 i (1

19 Reset Comm Link MiA MiA

20 Read General Reference Motsupported Motsupported
21 Write General Reference Motsupported Motsupported

(10 The maximum length of the entire message must not exceed 256 hytes,

984
Function Description Query Response
01 Fead Coil s 2000 coils 2000 cails
02 Read Input Status 2000 inputs 2000 inputs
03 Read Holding Registers 125 registers 126 registers
04 Read Input Registers 125 registers 126 registers
05 Force Zingle Cail 1 coil 1 coil
06 Preset Single Register 1 register 1 register
oy Read Excepton S@ats Mia g coils
s Diagnostcs Mia MiA
09 Program 454 Motsupported Motsupported
10 Poll 434 Motsupported Motsupported
11 Fetch Comm Event Counter Motsupported Motsupported

http://www.modicon.com/techpubs/app7.html (4 of 7) [1/11/2000 10:44:32 PM]

12 Fetch Comm Event Log Motsupported 0 dati hytes
13 Program Contraller 33dat bytes 33 dat hytes
14 Poll Contraller Mia 33 dat hytes
15 Force Multiple Coils 300 coils 00 coils

16 Preset Multiple Registers 100 registers 100 registers

17 Report Slave D Mia Mg

15 Program 334/M34 Motsupported Motsupported
19 Reset Comm Link Motsupported Motsupported
20 Read General Reference (1 (T

21 Write General Reference (1 (T

(10 The maximum length of the entire message must not exceed 256 hytes,

5.2 Estimating Serial Transaction Timing

The following sequence of events occurs during a Modbus serial transaction. Lettersin
parentheses () refer to the timing notes at the end of the listing.

1 The Modbus master composes the message.

2 The master device modem RTS and CTS status are checked. (DA)
3 The query message is transmitted to the lave. (D B)

4 The slave processes the query message. (DC, D D)

5 The slave calculates an error check field. (D E)

6 The slave device modem RTS and CTS status are checked. (DA)

7 The response message is transmitted to the master. (D B)
8 The master application acts upon the response and its data.
Timing Notes

A If the RTS and CTS pins are jumpered together, thistimeis negligible. For J478 modems, the
timeis about 5 ms.

B Use the following formulato estimate the transmission time:

Time (ms) = 1000 * (character count) * (bits/character)
Baud Rate

C The Modbus message is processed at the end of the controller scan. The worst-case delay is
one scan time, which occurs if the controller has just begun a new scan. The average delay is

http://www.modicon.com/techpubs/app7.html (5 of 7) [1/11/2000 10:44:32 PM]

half the scan time.

The time allotted for servicing Modbus ports at the end of the controller scan (before beginning
anew scan) depends upon the controller model. Timing for each model is described on the next

page.

For 484 controllers the time is approximately 1.5 ms. The Modbus port is available on a
contention basis with any J470/ J474 | JA75 that is present.

For 584 and 984 controllers the time is approximately 1.5 ms for each Modbus port. The ports
are serviced sequentially, starting with port 1.

For 184 / 384 controllers the time varies according to the amount of data being handled. It
ranges from a minimum of 0.5 msto a maximum of about 6.0 ms (for 100 registers), or 7.0 ms
(for 800 coils). If aprogramming panel is currently being used with the controller, the Modbus
port islocked out.

D Modbus functions 1 through 4, 15, and 16 permit the master to request more data than can be
processed during the time alloted for servicing the slave's Modbus port. If the slave cannot
process all of the data, it will buffer the data and processit at the end of subsequent scans.

The amount of data that can be processed during one service period at the Modbus port is as
follows:

Discretes Registers
Hicro 84 16 4
1341384 200 100
434 32 16
384 G4 32
934418 M G4 32
934X 1000 125

=
Note: 984-X8X refersto 984 slot mount models (984-385, -685, etc).

For the 884, the processing time for multiple datais as follows:

Read V65 coils: 14 scans

Force single caoil: 3 scans

Fead 256 inputs: 7 scans

Preset registers: 3 scans

Fead 125 output registers: 5 scans

Farce YES cails: 15 scans

Fead 125 input registers: S scans

Preset 100 registers: 10 scans

E LRC calculation timeislessthan 1 ms. CRC calculation timeis about 0.3 msfor each eight
bits of datato be returned in the response.

http://www.modicon.com/techpubs/app7.html (6 of 7) [1/11/2000 10:44:32 PM]

5.3 Notesfor the584 and 984A / B / X
Baud Rates

When using both Modbus ports 1 and 2, the maximum allowable combined baud rate is 19,200
baud.

Port Lockups
When using ASCII, avoid sending zero-data-length messages or messages with no device
address. For example, thisisan illegal message:

CR LF (colon, CR LF)
Random port lockups can occur this kind of message is used.

Terminating ASCI I Messages

A SCII messages should normally terminate with a CRLF pair. With the 584 and 984A/B/X
controllers, an ASCII message can terminate after the LRC field (without the CRLF characters
being sent), if aninterval of at least 1 sisallowed to occur after the LRC field. If this happens,
the controller will assume that the message has terminated normally.

http://www.modicon.com/techpubs/app7.html (7 of 7) [1/11/2000 10:44:32 PM]

Chapter 6
LRC / CRC Generation

V D LRC Generation

V DCRC Generation
6.1 LRC Generation

The Longitudinal Redundancy Check (LRC) field is one byte, containing an eight-bit binary value. The LRC valueis
calculated by the transmitting device, which appends the LRC to the message. The receiving device recalculates an LRC
during receipt of the message, and compares the calculated value to the actual valueit received in the LRC field. If thetwo
values are not equal, an error results.

The LRC is calculated by adding together successive eight-bit bytes in the message, discarding any carries, then two's
complementing the result. The LRC is an eight-bit field, therefore each new addition of a character that would result in avalue
higher than 255 decimal simply rolls over the field's value through zero. Because there is no ninth bit, the carry is discarded
automatically.

Generatingan LRC

Step 1 Add all bytesin the message, excluding the starting colon and ending CRLF. Add them into an eight-bit field, so that
carrieswill be discarded.

Step 2 Subtract the final field value from FF hex (all 1's), to produce the ones-complement.
Step 3 Add 1 to produce the two's-complement.
Placing the LRC into the M essage

When the the eight-bit LRC (two ASCII characters) is transmitted in the message, the high order character will be transmitted
first, followed by the low order character-e.g., if the LRC valueis 61 hex (0110 0001):

Cokn | &kt | Func Hata Dat | Dal | Dak | Dak LRI: tRE CR | LF
Count Hi Lo

Figure 8 LRC Character Sequence
Example

An example of a C language function performing LRC generation is shown below. The function takes two arguments:

unsi gned char *auchMsg ; A pointer to the nessage buffer
con-
taining
bi nary data to be used for
generating
the LRC

unsi gned short usDatalen ; The quantity of bytes in the
nessage
buffer.

The function returns the LRC as atype unsigned char.

LRC Generation Function

static unsigned char LRC(auchMsg, usDatalen)

http://www.modicon.com/techpubs/crc7.html (1 of 5) [1/11/2000 10:44:55 PM]

unsi gned char *auchMsg ; /* message to calculate */

unsi gned short usDatalLen ; /* LRC upon quantity of */
/*
bytes in nmessage */
{
unsi gned char uchLRC = 0 ; /* LRC char initialized */
whi l e (usDat aLen--) /* pass through nmessage */
uchLRC += *auchMsg++ ; [* buffer add buffer byte*/
/*
W t hout carry */
return ((unsigned char)(-((char_uchLRC))) ;
/*

return twos conpl emren */

}
6.2 CRC Generation

The Cyclical Redundancy Check (CRC) field is two bytes, containing a 16-bit binary value. The CRC value s calculated by
the transmitting device, which appends the CRC to the message. The receiving device recal culates a CRC during receipt of the
message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an
error results.

The CRC is started by first prel oading a 16-bit register to all 1's. Then a process begins of applying successive eight-bit bytes
of the message to the current contents of the register. Only the eight bits of datain each character are used for generating the
CRC. Start and stop bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each eight-bit character is exclusive ORed with the register contents. The result is shifted in the
direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted
and examined. If the LSB was a 1, the register is then exclusive ORed with a preset, fixed value. If the LSB wasa0, no
exclusive OR takes place.

This processis repeated until eight shifts have been performed. After the last (eighth) shift, the next eight-bit character is
exclusive ORed with the register's current value, and the process repeats for eight more shifts as described above. The fina
contents of the register, after al the characters of the message have been applied, isthe CRC value.

Generatinga CRC
Step 1 Load a 16-bit register with FFFF hex (all 1's). Call thisthe CRC register.

Step 2 Exclusive OR the first eight-bit byte of the message with the low order byte of the 16-bit CRC register, putting the
result in the CRC register.

Step 3 Shift the CRC register one bit to the right (toward the LSB), zerofilling the M SB. Extract and examine the L SB.

Step 4 If the LSB is 0, repeat Step 3 (another shift). If the LSB is 1, Exclusive OR the CRC register with the polynomial value
A001 hex (1010 0000 0000 0001).

Step 5 Repeat Steps 3 and 4 until eight shifts have been performed. When this is done, a complete eight-bit byte will have been
processed.

Step 6 Repeat Steps 2 ... 5 for the next eight-bit byte of the message. Continue doing this until all bytes have been processed.
Result The final contents of the CRC register isthe CRC value.

Step 7 When the CRC is placed into the message, its upper and lower bytes must be swapped as described bel ow.

Placing the CRC into the M essage

When the 16-bit CRC (two eight-bit bytes) is transmitted in the message, the low order byte will be transmitted first, followed
by the high order byte-e.g., if the CRC vaue is 1241 hex (0001 0010 0100 0001):

http://www.modicon.com/techpubs/crc7.html (2 of 5) [1/11/2000 10:44:55 PM]

Dak CRC CRC
Aok Func Count Daka Dakz Daka Daka Lo Hi

41 1z

Figure 9 CRC Byte Sequence

Example

An example of a C language function performing CRC generation is shown on the following pages. All of the possible CRC
values are preloaded into two arrays, which are simply indexed as the function increments through the message buffer. One
array contains al of the 256 possible CRC values for the high byte of the 16-bit CRC field, and the other array contains all of

the values for the low byte.

Indexing the CRC in this way provides faster execution than would be achieved by calculating a new CRC value with each

new character from the message buffer.

=
Note: Thisfunction performs the swapping of the high/low CRC bytesinternally. The bytes are already swapped in the CRC
value that is returned from the function. Therefore the CRC value returned from the function can be directly placed into the

message for transmission.

The function takes two arguments:

unsi gned char *puchMsg ; A pointer to the nessage buffer

binary data to be used

cont ai ni ng

for
generating the CRC
unsi gned short usDatalen ; The quantity of bytes in the
nmessage
buf f er.
The function returns the CRC as a type unsigned short.
CRC Generation Function
unsi gned short CRCLl6(puchMsg, usDatalen)
unsi gned char *puchMsg ; /* message to calculate CRC
upon */
unsi gned short usDatalLen ; /* quantity of bytes in nessage
*/
{ | . |
unsi gned char uchCRCH = OxFF ; /* high CRC byte
initialized */
unsi gned char uchCRCLo = OxFF ; /* |low CRC byte
initialized */
unsi gned ul ndex ; /* will index into CRC
| ookup*/
/* table
*/
whil e (usDatalen--) /* pass through nessage buffer
*/
{
ul ndex = uchCRCH " *puchMsgg++ ; /* calculate the CRC
*/

http://www.modicon.com/techpubs/crc7.html (3 of 5) [1/11/2000 10:44:55 PM]

uchCRCHi
uchCRCLo

}

uchCRCLo * auchCRCHi [ul ndex} ;
auchCRCLo[ul ndex] ;

return (uchCRCH << 8 | uchCRCLo) ;
}
High Order Byte Table

/* Table of CRC val ues for high-order byte */

static unsigned char auchCRCH [] = {

0x00, OxCl1, 0x81, 0x40, O0x01, O0xC0, 0x80, 0x41, 0x01, O0OxcCo,
0x80, 0x41, 0x00, O0xCi1, 0x81, 0x40, 0x01, O0xC0, 0x80, 0x41
0x00, OxC1l, 0x81, 0x40, 0x00, OxCl, 0x81, 0x40, 0x01, 0xCo,
0x80, 0x41, 0x01, O0xCO, 0x80, 0x41, 0x00, O0xCl, 0x81, 0x40,
0x00, OxCi1, 0x81, 0x40, 0x01, OxC0, 0x80, 0x41, 0x00, OxC1,
0x81, 0x40, 0x01, O0xCO, 0x80, 0x41, 0x01, OxCO, 0x80, 0x41,
0x00, OxC1, 0x81, 0x40, 0x01, OxC0, 0x80, 0x41, O0x00, OxC1,
0Ox81, 0x40, 0x00, OxCl, 0x81, 0x40, 0x01, O0OxCO, 0x80, 0x41,
0x00, OxCl, 0x81, 0x40, 0x01, O0xCO, 0x80, 0x41, 0x01, OxcCo,
0x80, 0x41, 0x00, 0OxCl, 0x81, 0x40, 0x00, O0xCl, 0x81, 0x40,
0x01, OxCo0, 0x80, 0x41, 0x01, O0xC0, 0x80, 0x41, 0x00, OxC1,
0x81, 0x40, 0x01, 0xCO, 0x80, 0x41, 0x00, O0xCl, 0x81, 0x40,
0x00, OxC1, 0x81, 0x40, O0x01, OxC0, 0x80, 0x41, 0x01, O0OxcCo,
0x80, 0x41, 0x00, OxCl, 0x81, 0x40, 0x00, O0xCl, 0x81, 0x40,
0x01, OxCO0, 0x80, 0x41, 0x00, OxCl, 0x81, 0x40, 0x01, 0xCo,
0x80, 0x41, 0x01, O0xCO0, 0x80, 0x41, 0x00, OxCl, 0x81, 0x40,
0x00, OxCi1, 0x81, 0x40, 0x01, OxC0, 0x80, 0x41, 0x01, OxcCo,
0x80, 0x41, 0x00, OxCl, 0x81, 0x40, 0x01, O0xCO, 0x80, 0x41,
0x00, OxCl, 0x81, 0x40, 0x00, OxC1i, 0x81, 0x40, 0x01, OxcQCo,
0x80, 0x41, 0x00, OxCl, 0x81, 0x40, 0x01, 0OxCO, 0x80, 0x41,
0x01, OxCo0, 0x80, 0x41, 0x00, 0xCl, 0x81, 0x40, 0x01, O0OxcCo,
0x80, 0x41, 0x00, 0OxCl, 0x81, 0x40, 0x00, O0xCl, 0x81, 0x40,
0x01, OxCo0, 0x80, 0x41, 0x01, O0xC0, 0x80, 0x41, 0x00, OxC1,
0x81, 0x40, 0x00, 0OxCi1, 0x81, 0x40, 0x01, O0xC0, 0x80, 0x41
0x00, OxCl, 0x81, 0x40, 0x01, OxC0, 0x80, 0x41, 0x01, 0xCo,
0x80, 0x41, 0x00, 0OxCl, 0x81, 0x40

b
Low Order Byte Table
/* Table of CRC values for |ow order byte */

static char auchCRCLo[] = {

0x00, OxCo0, O0xCi1, 0x01, O0xC3, 0x03, 0x02, 0xC2, 0xCs, 0x06,
0x07, OxC7, 0x05, 0xCh, OxC4, 0x04, OxCC, 0x0C, 0x0D, 0xCb,
OxOF, OxCF, OxCE, OxOE, OxOA, OxCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0OxC8, 0xD8, 0x18, 0x19, O0xD9, 0x1B, 0xDB, O0xDA, Ox1A,
Ox1E, OxDE, OxDF, Ox1F, OxDD, 0x1D, 0x1C, O0xDC, 0x14, 0OxD4,
OxD5, 0x15, 0OxDr7, 0x17, 0Ox16, OxD6, 0xD2, 0x12, 0x13, 0xD3,
Ox11, OxD1, OxDO, 0x10, OxFO, 0x30, 0x31, OxF1, 0x33, OxF3,
OxF2, 0x32, 0x36, OxF6, OxF7, 0x37, OxF5, 0x35, 0x34, OxF4,
0x3C, OxFC, OxFD, 0x3D, OxFF, Ox3F, Ox3E, OxFE, OxFA, Ox3A,
0x3B, OxFB, 0x39, O0xF9, O0xF8, 0x38, 0x28, OxE8, OxE9, 0x29,
OXEB, 0x2B, O0x2A, OxEA, OxEE, O0x2E, O0x2F, OxEF, 0x2D, OxED,
OXEC, 0x2C, OxE4, 0x24, 0x25, OxE5, 0x27, OxE7, OxE6, 0x26,
0x22, OxE2, OxE3, 0x23, OxEl, 0x21, 0x20, OxEO, OxA0, 0x60,

http://www.modicon.com/techpubs/crc7.html (4 of 5) [1/11/2000 10:44:55 PM]

0x61, OxA1,
OxA5, 0x65,
Ox6E, OXAE,
0x78, 0xB8,
Ox7F, OxBF,
Ox77, OxB7,
0x70, O0xBO,
0x96, 0x56,
0x5D, 0x9D
0x99, 0x59,
Ox8A, O0x4A,
0x44, 0x84,
0x43, 0x83,

P

0x63,
0x64,
OxAA,
0xB9,
Ox7D,
0xB6,
0x50,
0x57,
Ox5F,
0x58,
Ox4E,
0x85,
0x41,

0xA3,
OxA4,
OXx6A,
0x79,
0xBD,
0x76,
0x90,
0x97,
Ox9F,
0x98,
Ox8E,
0x45,
0x81,

OxA2,
0x6C,
0x 6B,
0x BB,
0xBC,
0x72,
0x91,
0x55,
Ox9E,
0x88,
Ox8F,
0x87,
0x80,

0x62,
OxAC,
OxAB,
0x7B,
0x7C,
0xB2,
0x51,
0x95,
Ox5E,
0x48,
Ox4F,
0x47,
0x40

0x66,
OxAD,
0x69,
OX7A,
0xB4,
0xB3,
0x93,
0x94,
Ox5A,
0x49,
0x8D,
0x46,

0xA6,
0x6D,
0xA9,
OxBA,
0x74,
0x73,
0x53,
0x54,
0x9A,
0x89,
0x4D,
0x86,

http://www.modicon.com/techpubs/crc7.html (5 of 5) [1/11/2000 10:44:55 PM]

Ox A7,
OxAF,
Ox A8,
OxBE,
0x75,
0xB1,
0x52,
0x9C,
0x9B,
0x4B,
0x4C
0x82,

0x67,
Ox6F,
0x68,
OX7E,
0xB5,
Ox71,
0x92,
0x5C,
0x5B,
0x8B,
0x8C,
0x42,

	Title page
	Modbus Protocol description
	Table of Contents
	1 Modbus Protocol- Intro
	2 Data and Control Functions
	3 Diagnostic Subfunctions
	4 Exception Responses
	5 Application Notes
	6 LRC/CRC Generation

